Algèbre linéaire avancée II printemps 2025

Série 11 – Corrigé

L'exercice marqué d'un (+) sert d'introduction à la série, tandis que celui marqué d'une (*) est plus difficile. Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Moodle 2 semaines après. Les solutions des exercices (*) et (+) seront discutées dans les séances d'exercices du mardi d'après et d'avant respectivement. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. (+) Synthèse des résultats sur la forme normale de Jordan.

Soit $A\in\mathbb{C}^{n\times n}$ une matrice et $J\in\mathbb{C}^{n\times n}$ sa forme normale de Jordan. Appelons un bloc de Jordan ayant λ sur sa diagonale un bloc $associ\'{e}$ à λ . Alors

- 1. Les blocs de J sont associés aux valeurs propres de A.
- 2. La somme des tailles des blocs associés à la même valeur λ est égale à la multiplicité algébrique de λ .
- 3. Le nombre de blocs associés à la même valeur λ est égal à la multiplicité géométrique de λ .
- 4. La taille du plus gros bloc de Jordan associé à λ est égale à la multiplicité de λ dans le polynôme minimal de A.
- 5. La forme normale de Jordan est unique à ordre des blocs près.

Solution. Il s'agit d'une synthèse des résultats.

Exercice 2. Soit $A \in \mathbb{C}^{n \times n}$. Montrer, à l'aide de l'exercice précédent, que A est diagonalisable si et seulement si son polynôme minimal n'admet que des racines simples (c'est-à-dire leur multiplicité est 1).

En déduire que si $A \in \mathbb{C}^{n \times n}$ vérifie $A^3 = A$, alors A est diagonalisable.

Solution. D'après le point 4 de l'exercice 1, la multiplicité d'une valeur propre λ dans le polynôme minimal donne la taille du plus gros bloc associé à cette valeur.

Par conséquent, chaque bloc est de taille 1 dans la forme de Jordan de A. Celle-ci est donc une matrice diagonale, et $A=PJP^{-1}$ donne exactement la diagonalisation de A.

Dans le cas où $A^3=A$, le polynôme $x^3-x=x(x+1)(x-1)$ annule A. Le polynôme minimal de A divise donc x^3-x , et ses racines doivent également être simples.

Exercice 3. Cet exercice concerne la Remarque 7.7 des notes du cours. Soient V un espace vectoriel, $T:V\to V$ un endomorphisme et f(x)=x(x+1), g(x)=(x+2)(x-1).

- 1. Calculez f(x) g(x).
- 2. Vérifiez que

$$\operatorname{id} = \frac{1}{2}(T \circ (T + \operatorname{id}) - (T + 2\operatorname{id}) \circ (T - \operatorname{id})).$$

3. Dans la Remarque 7.7 est-ce que T doit forcément être un endomorphisme ou est-ce que la remarque est juste pour toute fonction $T:V\to V$?

Solution. 1. On obtient f(x) - g(x) = 2.

- 2. Vérification immédiate.
- 3. Non, on peut facilement trouver des contre-exemples.

Exercice 4. Relire et compléter la preuve du théorème de Jordan.

1. Montrer que les orbites de

$$x_1,\ldots,x_{i-1},y,x_{i+1},\ldots,x_\ell$$

engendrent encore V (cf. la démonstration du théorème de Jordan pour leur définition).

- 2. Pourquoi applique-t-on N à la combinaison linéaire autant de fois que possible ? Si $k \geq 2$, trouver à quoi ressemble la combinaison linéaire et le vecteur y' qui remplace x_i si on applique N seulement k-1 fois. Argumenter, dans ce cas, que y' a une durée de vie inférieure à y, mais que les orbites ne génèrent pas forcément le même espace.
- 3. Montrer que si $m=\min_{j\in J}m_j-1=0$, et donc qu'aucun progrès n'est réalisé dans le cas 2, le cas 1 s'applique : il existe un i tel que $Nx_i=0$, et tel que le coefficient devant x_i dans la combinaison linéaire est non nul.

Solution. 1. Rappelons que

$$x_i = rac{1}{\gamma_i}y - rac{1}{\gamma_i}\sum_{j\in J, j
eq i} \gamma_j N^{m_j-1-m}x_j.$$

Ainsi, pour tout élément $N^p x_i$ de l'orbite de x_i , on a

$$N^p x_i = rac{1}{\gamma_i} N^p y - rac{1}{\gamma_i} \sum_{j \in J, j
eq i} \gamma_j N^{m_j - 1 - (m - p)} x_j.$$

Ceci implique que tout élément qui est une combinaison linéaire des éléments des orbites de x_1, \ldots, x_l peut être écrit comme combinaison linéaire des éléments des orbites de

$$x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_l.$$

2. Après avoir appliqué N le plus de fois possible (k fois), on trouve, pour un certain x_i de durée de vie k+1,

$$N^k\left(\gamma_i x_i + \sum_{j\in J, j
eq i} \gamma_j N^{m_j-1-k} x_j
ight) = 0,$$

d'où notre définition $y:=\gamma_i x_i+\sum_{j\in J, j\neq i}\gamma_j N^{m_j-1-k}x_j$, de durée de vie k. D'autre part, appliquer k-1 fois N donne

$$N^{k-1}\left(\gamma_i x_i + \sigma_i N x_i + \sum_{j\in J, j
eq i} \gamma_j N^{m_j-1-m} x_j
ight) = 0,$$

pour un certain $\sigma_i \neq 0$.

Nous serions donc tenté de définir $y':=\gamma_i x_i+\sigma_i N x_i+\sum_{j\in J, j\neq i}\gamma_j N^{m_j-1-m}x_j$, la durée de vie de y' étant k-1.

Or dans ce cas, la justification de la question 1 ne tient plus : on ne peut pas écrire x_i comme combinaison linéaire de y' et d'éléments des orbites de $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_l$.

Question ouverte : l'élément N^kx_i est-il quand même toujours dans l'espace généré par les orbites ?

3. Dans cette situation, on ne peut pas factoriser par une puissance de N, ni réappliquer N car tous les termes deviennent nuls.

La première assertion implique qu'un x_i apparaît dans la combinaison linéaire avec un coefficient non nul. La deuxième donne $Nx_i=0$. Ceci correspond exactement au cas 1.

Exercice 5. Donner la forme normale de Jordan J de la matrice

$$A = egin{pmatrix} 9 & 4 & 5 \ -4 & 0 & -3 \ -6 & -4 & -2 \end{pmatrix} \,.$$

Solution. On commence par trouver les valeurs propres de A. On a que le polynôme caractéristique de A est

$$p_A(\lambda) = (\lambda - 2)^2(\lambda - 3)$$
.

donc la forme normale de Jordan de A est

$$J_1 = egin{pmatrix} 2 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 3 \end{pmatrix} \quad ou \quad J_2 = egin{pmatrix} 2 & 1 & 0 \ 0 & 2 & 0 \ 0 & 0 & 3 \end{pmatrix}.$$

La multiplicité géométrique de $\lambda=2$ est 1, donc A n'est pas diagonalisable et la forme normale de Jordan J est $J=J_2$.

Exercice 6. Le but de cet exercice est de montrer l'unicité de la forme normale de Jordan.

1. Considérons d'abord un bloc de Jordan $B \in \mathbb{R}^{n \times n}$ associé à la valeur propre λ . Montrer que, pour tout $m \in \mathbb{N}$,

$$rank(B - \lambda I)^m = max\{n - m, 0\}.$$

2. Considérons à présent une matrice J construite à partir de blocs de tailles $n_1 > n_2 > \cdots > n_k$ et associés à la même valeur propre λ . Soit m_i le nombre de blocs de taille n_i . Montrer que

$$rank(J - \lambda I)^{m} = \sum_{i=1}^{k} m_{i} \max\{n_{i} - m, 0\}.$$
 (1)

3. Montrer que si A and B sont semblables, alors $\operatorname{rank}((A-\lambda I)^m)=\operatorname{rank}((B-\lambda I)^m)$. Déduire que si A and B sont semblables, et que si leur seule valeur propre est λ , alors leurs formes normales de Jordan sont identiques à ordre des blocs près.

Indice: évaluer (1) en
$$m = n_1, n_1 - 1, n_2, n_2 - 1, \ldots$$

4. En considérant chaque valeur propre une à une, conclure de l'unicité de la forme normale de Jordan à ordre des blocs près.

Solution. 1. $B - \lambda I$ est de la forme

$$\begin{pmatrix} 0 & 1 & & & & & \\ & 0 & 1 & & & & & \\ & & & \ddots & \ddots & & \\ & & & & 0 & 1 \end{pmatrix}.$$

Chaque puissance de $B-\lambda I$ fait monter la diagonale et diminue le rang de 1, jusqu'à ce que $(B-\lambda I)^n=0$. Ainsi $(B-\lambda I)^k=0$ pour tout $k\geq n$, et la formule est vérifiée.

2. On utilise l'égalité suivante : $\operatorname{rank} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \operatorname{rank}(A) + \operatorname{rank}(B).$

La relation découle donc naturellement de la question 1, car si

$$A=egin{pmatrix} B_1 & & & & \ & B_2 & & & \ & & \ddots & & \ & & & B_N \end{pmatrix}$$
 ,

alors

$$A^m = egin{pmatrix} B_1^m & & & & \ & B_2^m & & & \ & & \ddots & & \ & & & B_N^m \end{pmatrix}.$$

3. Si A et B sont semblables, il existe une matrice P inversible telle que $A = PBP^{-1}$.

Par conséquent, les matrices $(A - \lambda I)^m$ et $(B - \lambda I)^m$ sont également semblables, car

$$(A - \lambda I)^m = (PBP^{-1} - \lambda PP^{-1})^m = (P(B - \lambda I)P^{-1})^m.$$

Leurs rangs sont donc égaux, car leurs images sont isomorphes : P^{-1} définit un isomorphisme de $Im(A) \rightarrow Im(BP^{-1}) = Im(B)$.

En conclusion, les valeurs $\operatorname{rank}(A-\lambda I)^m$ sont invariantes par changement de base. L'évaluation successive proposée en indice permettra de déduire que les quantités m_1, \ldots, m_k et n_1, \ldots, n_k sont également des invariants. Il suivra naturellement que, dès que deux formes de Jordan J_1 et J_2 sont semblables, elles auront le même nombre de blocs de même tailles. Les J_1 et J_2 seront donc égales, à ordre des blocs près.

En évaluant (1) en $m = n_1$ et $m = n_1 - 1$, on a que

$$rank(A - \lambda I)^{n_1} = 0$$
, et $rank(J - \lambda I)^{n_1-1} = m_1$.

L'entier n_1 est donc invariant car c'est le premier entier n tel que $\operatorname{rank}(A - \lambda)^n = 0$, et m_1 l'est également par la seconde égalité.

En évaluant (1) en $m=n_1-2$, on obtient le m_1 plus le nombre de blocs de taille n_1-1 . S'il n'existe pas de blocs de taille n_1-1 , on obtient donc simplement m_1 . Le rang agit linéairement en m_1 jusqu'à ce qu'un bloc de taille inférieure apparaisse. Par conséquent, en diminuant la puissance successivement, on peut déduire la valeur de n_2 : c'est le plus petit entier $n < n_1$ tel que

$$\operatorname{rank}(A - \lambda I)^n = (n_1 - n) \cdot m_1.$$

En évaluant (1) en $m = n_2 - 1$, on a que

$$\operatorname{rank}(J - \lambda I)^{n_2 - 1} = m_1(n_1 - n_2 + 1) + m_2.$$

L'entier m_2 est donc invariant car m_1 , n_1 et n_2 le sont.

Chaque paire d'évalutations donne que n_i est invariant, puis que m_i l'est aussi, pour $i=1,\ldots,k$. C'est ce qu'il fallait démontrer.

4. Pour λ une valeur propre de $A \in \mathbb{C}^{n \times n}$, on écrit sa forme normale de Jordan J sous la forme $J = \begin{pmatrix} J_{\lambda} \\ R \end{pmatrix}$, où J_{λ} est constituée des blocs associés à λ , et la matrice R regroupe le reste des blocs.

Notons r la dimension de R, et remarquons que c'est un invariant par changement de base. En effet, la dimension de J est égale à la multiplicité algébrique $m_{\rm alg}(\lambda)$ de λ , invariante car le polynôme caractéristique l'est. D'où $r=n-m_{\rm alg}(\lambda)$ est également un invariant.

Soustraire λI à J agit alors sur J_{λ} , et rend R inversible. En fait, on a toujours $\operatorname{rank}(R-\lambda I)^m=r$ (la matrice est triangulaire supérieure avec éléments diagonaux non nuls : son déterminant est non nul).

Par conséquent, les quantités $\operatorname{rank}(J_{\lambda}-\lambda I)^m=\operatorname{rank}(J-\lambda I)^m-r$ sont invariants par changement de base. La justification de la question 3 permet alors de conclure ; la taille des blocs associés à λ et le nombre de blocs de chaque taille sont invariants par changement de base.

Si une matrice A admet deux formes normales de Jordan J_1 et J_2 , elles doivent être semblables par transitivité. Par conséquent, la taille des blocs et le nombre de blocs de chaque taille sont les mêmes : les deux matrices sont les mêmes, à permutation des blocs près.

Exercice 7. Déterminer si les assertions suivantes sont vraies ou fausses.

- a) Si J est la forme normale de Jordan pour une matrice A, J^2 est la forme normale de Jordan pour A^2 .
- b) Si A et B sont deux matrices $\in \mathbb{C}^{n \times n}$, les matrices AB et BA ont les mêmes formes normales de Jordan.

Solution. a) Faux. Soit J une matrice en forme de Jordan. On a que J^2 n'est pas nécessairement une matrice en forme de Jordan. Par exemple si

$$J = egin{pmatrix} 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{pmatrix}$$
 ,

alors

$$J^2 = egin{pmatrix} 1 & 2 & 1 \ 0 & 1 & 2 \ 0 & 0 & 1 \end{pmatrix}$$
 ,

et on voit clairement que J^2 n'est pas en forme de Jordan.

b) Faux. La multiplication n'est pas commutative. Par exemple on peut considérer

$$A=egin{pmatrix} 1 & 1 \ 0 & 0 \end{pmatrix}$$
 , $B=egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$,

et on obtient

$$AB = egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \;, \quad BA = egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix} \;.$$

AB et BA sont deux matrices en forme de Jordan différentes.

Remarquons que les polynômes caractéristiques de AB et de BA sont identiques, mais pas les polynômes minimaux.

Exercice 8. Soient $A, B \in \mathbb{R}^{n \times n}$ deux matrices sembables sur \mathbb{C} .

- a) Montrer que A et B sont aussi semblables sur \mathbb{R} .
- b) En déduire, à partir de l'unicité de la forme de Jordan (exercice 5), que deux matrices sont semblables sur $\mathbb R$ si et seulement s'ils admettent la même forme normale de Jordan.

Solution. a) On veut montrer que les matrices A et B sont semblables sur \mathbb{R} . Il existe une matrice $P \in \mathbb{C}^{n \times n}$ inversible telle que

$$A = PBP^{-1} \Longleftrightarrow AP = PB. \tag{2}$$

On écrit $P=P_1+iP_2$ avec $P_1,P_2\in\mathbb{R}^{n\times n}$ (cela est possible car chaque élément de la matrice s'écrit comme $(P)_{ij}=p_{ij}+i\tilde{p}_{ij}$ avec $p_{ij},\tilde{p}_{ij}\in\mathbb{R}$ et on peut donc rassembler les p_{ij} dans la matrice P_1 et les \tilde{p}_{ij} dans la matrice P_2). L'équation (2) donne les deux équations $AP_1=P_1B$ et $AP_2=P_2B$.

On considère la fonction $f(x) = \det(P_1 + xP_2)$, comme f est définie par un déterminant on sait que f est un polynôme réel de degré n. Mais on peut voir f aussi comme un polynôme complexe et comme P est une matrice inversible on sait que $f(i) \neq 0$.

Ainsi f n'est pas le polynôme identiquement nul sur $\mathbb C$ et par conséquent f n'est pas le polynôme identiquement nul sur $\mathbb R$. Il existe un élément $y \in \mathbb R$ tel que $f(y) \neq 0$ car f possède au plus n racines réelles distinctes.

Posons $Q=P_1+yP_2\in\mathbb{R}^{n imes n}$, alors Q est inversible et on obtient

$$AQ = AP_1 + yAP_2 = P_1B + yP_2B = QB.$$

- b) ⇒: Quand deux matrices réelles A et B sont semblables sur ℝ alors A est semblable à sa forme normale de Jordan mais aussi à la forme normale de Jordan de la matrice B. Ainsi A est semblable à deux formes normales de Jordan et par unicité on obtient que A et B admettent la même forme normale de Jordan.
- \Leftarrow : Quand A et B admettent la même forme normale de Jordan alors les deux matrices sont semblable sur \mathbb{C} . Le point a) donne que A et B sont aussi semblable sur \mathbb{R} .

Exercice 9. Soit $A \in \mathbb{C}^{n \times n}$ telle qu'il existe un $m \in \mathbb{N}$ vérifiant $A^m = I$. Montrer que A est inversible, expliciter ses valeurs propres, et en déduire que $\text{Tr}(A^{-1}) = \overline{\text{Tr}(A)}$.

Solution. Le polynôme minimal de A divise x^m-1 , dont les racines sont les m-èmes racines de l'unité $e^{2\pi i k/m}$, $k=0,\ldots,m-1$. Les racines du polynômes minimal de A sont donc des racines m-èmes de l'unité. Celui-ci divisant le polynôme caractéristique, les valeurs propres de A doivent également être des racines m-èmes de l'unité.

Notons au passage que A est inversible, car elle n'admet pas 0 comme valeur propre. De plus,

$$p_{car,A}(x)=\det(A-xI)=\det(A)x^n\det(rac{1}{x}I-A)=\pm\det(A)x^np_{car,A^{-1}}(1/x).$$

Les valeurs propres de A^{-1} sont donc l'inverse des valeurs propres de A, avec multiplicités algébriques égales.

Le résultat est donc une conséquence du fait que $\overline{e^{2\pi ik/m}}=\left(e^{2\pi ik/m}
ight)^{-1}$, et que la trace d'une matrice est la somme de ses valeurs propres.

Exercice 10. Soit $A = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & -1 \\ -6 & -5 & -3 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$. Soit $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'application linéaire

associée à cette matrice A. Trouver des sous-espaces $V_1, V_2 \subseteq \mathbb{R}^3$ qui satisfont les conditions du Lemme 6.15., c'est-à-dire $\mathbb{R}^3=V_1\oplus V_2$, $T(V_i)\subseteq V_i$ et $T_{|V_i}=N_i+\lambda_i I$, où $N_i \colon V_i \to V_i$ est nilpotente, pour i = 1, 2.

Solution. On va suivre la démonstration du lemme 6.15. pour trouver ces sousespaces. On cherche d'abord les valeur propres de la matrice A. On voit que $p_A(x)=(x+2)^2(x-2)$. On calcule alors les espaces des vecteurs propres pour

$$-2$$
 et pour 2. On a que $\ker(A-2I)=\mathrm{span}\{egin{pmatrix}0\\1\\-1\end{pmatrix}\}$ et $\ker(A+2I)=\mathrm{span}\{egin{pmatrix}1\\-1\\-1\end{pmatrix}\}.$

On remarquant que $\dim(\ker(A+2I))=1< m_a(-2)=2$ on voit que la matrice

$$A \ \textit{n'est pas diagonalisable}. \ \textit{On calcule alors} \ \ker((A+2I)^2) = \operatorname{span}\{egin{pmatrix}1\\-1\\-1\end{pmatrix},egin{pmatrix}0\\0\\1\end{pmatrix}\}.$$

On va maintenant voir que $V_1=\operatorname{span}\{\begin{pmatrix}1\\-1\\-1\end{pmatrix},\begin{pmatrix}0\\0\\1\end{pmatrix}\}$ et $V_2=\operatorname{span}\{\begin{pmatrix}0\\1\\-1\end{pmatrix}\}$ sont des sous-espaces qui satisfont toutes les conditions du Lemme 6.15.

 $T(V_2) \subseteq V_2$ est facile à voir, vu que V_2 est engendré par un vecteur propre.

$$Pour\ voir\ que\ T(V_1)\subseteq V_1\ on\ prend\ un\ vecteur\ v=egin{pmatrix} a \ -a \ -a+b \end{pmatrix}\in V_1,\ pour\ a,b\in\mathbb{R}\ \ et$$

Pour voir que $T(V_1)\subseteq V_1$ on prend un vecteur $v=\begin{pmatrix} a\\ -a\\ -a+b \end{pmatrix}\in V_1$, pour $a,b\in\mathbb{R}$ et on regarde l'image T(v). $T(v)=\begin{pmatrix} -2a+b\\ 2a-b\\ 2a-3b \end{pmatrix}$ qui est clairement encore un vecteur

$$de \,\, V_1 \,\, car \,\, il \,\, peut \,\, \hat{e}tre \,\, \acute{e}crit \,\, comme \,\, (-2a+b) egin{pmatrix} 1 \ -1 \ -1 \end{pmatrix} - 2b egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}.$$

Encore une fois, vu que V_2 est composé d'un vecteur propre, il est facile de voir que $T_{|V_2} = N_2 + 2I$, où $N_2 = 0$.

Pour V_1 on peut voir que $T_{|V_1} = (T+2I)_{|V_1} - (2I)_{|V_1}$. Maintenant on veut voir que $N_1=(T+2I)_{\mid V_1}$ est nilpotente. On peut utilise la définition de V_1 : en fait,

comme $V_1 = \ker((A+2I)^2)$ on sait que $(N_1)_{|V_1}^2 = 0$. On peut aussi vérifier cette condition directement:

$$(A+2I)^2 = egin{pmatrix} 0 & 0 & 0 \ 16 & 16 & 0 \ -16 & -16 & 0 \end{pmatrix}, \Rightarrow (A+2I)^2 egin{pmatrix} -a \ a \ a+b \end{pmatrix} = egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix}.$$

Il reste finalement à voir que $\mathbb{R}^3 = V_1 \oplus V_2$. Pour cela, il suffit de montrer que les vecteurs sont indépendants, ce qu'on peut faire facilement en vérifiant que

$$\detegin{pmatrix}1&0&0\-1&0&1\-1&1&-1\end{pmatrix}
eq 0\ et\ que\ V_1\cap V_2=\{0\}\ en\ rcute{esolvant}\ le\ syst\`{e}me$$

$$egin{pmatrix} a \ -a \ -a+b \end{pmatrix} = egin{pmatrix} 0 \ c \ -c \end{pmatrix}$$
 ,

dont la seule solution possible est a = b = c = 0.

Exercice 11. Soit $T: V \to V$ un endomorphisme et soit $V_1, ..., V_k$ une décomposition de V telle que $V = V_1 \oplus \cdots \oplus V_k$, $T(V_i) \subseteq V_i$ et $T_{|V_i|} = N_i + \lambda_i I$, où $N_i: V_i \to V_i$ est nilpotente et les valeurs $\{\lambda_i\}_{i=1}^k$ sont distinctes. Montrer que

- a) $V_i = \ker(T \lambda_i I)^{a_i}$ pour un entier a_i tel que $N_i^{a_i} = 0$. Indice pour l'inclusion \supseteq : les polynômes $(x - \lambda_i)^{a_i}$ et $(x - \lambda_j)^{a_j}$ sont premiers entre eux lorsque $i \neq j$.
- b) Les $\lambda_1, ..., \lambda_k$ sont des valeurs propres de T.
- c) Le polynôme $f(x) = \prod_{i=1}^k (x \lambda_i)^{a_i}$ annule T.

 In dice: montrer que f(T)(v) = 0 pour tout $v \in V$ en utilisant la décomposition de V et le premier point.
- d) En déduire que l'ensemble $\{\lambda_1, ..., \lambda_k\}$ contient toutes les valeurs propres de T In $dice: si v \neq 0$ est un vecteur propre de T de valeur propre λ , exprimer f(T)(v) en fonction de f, λ , et v.
- e) Conclure que les valeurs sur la diagonale de n'importe quelle forme normale de Jordan de T constituent l'ensemble des valeurs propres de T.

Solution. a) Pour un i fixé, soit $v \in V_i$ et a_i le plus petit entier tel que $N_i^{a_i} = 0$. Comme $T_{|V_i}(u) = T(u) \ \forall u \in V_i$ et $T(V_i) \subseteq V_i$, on a

$$egin{aligned} (T-\lambda_i I)^{a_i}(v) &= (T_{|V_i}-\lambda_i I)^{a_i}(v) \ &= (N_i + \lambda_i I - \lambda_i I)^{a_i}(v) \ &= N_i^{a_i}(v) \ &= 0. \end{aligned}$$

Il suit que $V_i \subseteq \ker(T - \lambda_i I)^{a_i}$.

Pour un $v \in \ker(T-\lambda_i I)^{a_i}$, et par hypothèse, il existe v_1, \ldots, v_k dans V_1, \ldots, V_k tels que

$$v = \sum_{j=1}^k v_j.$$

Comme T et I laissent V_j invariant pour tout j, on a nécessairement

$$(T-\lambda_i I)^{a_i}v_j\in V_j$$

pour tout j. Dès lors, l'égalité $(T-\lambda_i I)^{a_i}v=0$ implique que

$$(T-\lambda_i I)^{a_i}v_j=0$$

pour tout j.

Or l'inclusion déjà démontrée spécifie que $V_j \subseteq \ker(T-\lambda_j I)^{a_j}$, c'est-à-dire

$$(T-\lambda_j I)^{a_j} v_j = 0$$

Cependant, les polynômes $(x - \lambda_i)^{a_i}$ et $(x - \lambda_j)^{a_j}$ sont premiers entre eux et donc leurs noyaux admettent une intersection triviale, d'après le cours. Brièvement, pour $i \neq j$, on trouve f, g tels que $f(x)(x-\lambda_j)^{a_j}+g(x)(x-\lambda_i)^{a_i}=1$. En évaluant en T, et en considérant l'image par v_j , on a

$$f(T)(T-\lambda_j I)^{a_j}v_j+g(T)(T-\lambda_i I)^{a_i}v_j=v_j,$$

d'où $v_j = 0$ pour tout $j \neq i$.

Par conséquent, $v = v_i \in V_i$, comme souhaité.

b) Soit a_i le plus petit entier tel que $N_i^{a_i} = 0$. Alors

$$\{0\}
eq N_i^{a_i-1}(V_i) = (T-\lambda_i I)^{a_i-1}(V_i)$$

et donc on peut choisir un vecteur $0 \neq v \in (T-\lambda_i I)^{a_i-1}(V_i) \subseteq V_i$. Pour ce vecteur, on a

$$(T-\lambda_i I)(v)\in (T-\lambda_i I)^{a_i}(V_i)=\{0\}$$

 $car V_i \subseteq \ker(T - \lambda_i I)^{a_i}$ par le point a). Ainsi, v est un vecteur propre de valeur propre λ_i .

c) Soit $v \in V$. On peut écrire $v = \sum_{i=1}^k v_i$ avec $v_i \in V_i$. Remarquons que $(T-\lambda_i I)^{a_i}(v_j) \in V_j$ pour tout $v_j \in V_j$ (car T et I envoient V_j dans V_j), et

donc en appliquant les termes $(T-\lambda_j I)^{a_j}$ l'un après l'autre, on obtient

$$egin{aligned} f(T)(v) &= \left(\prod_{i=1}^k (T-\lambda_i I)^{a_i}
ight)(v) \ &= \left(\prod_{i=1}^k (T-\lambda_i I)^{a_i}
ight)(v_1+\cdots+v_k) \ &= \left(\prod_{i=1}^{k-1} (T-\lambda_i I)^{a_i}
ight)((T-\lambda_k I)^{a_k}(v_1+\ldots v_k)) \ &= \left(\prod_{i=1}^{k-1} (T-\lambda_i I)^{a_i}
ight)\left(\underbrace{(T-\lambda_k I)^{a_k}(v_1)}_{=:v_1' \in V_1}+\cdots+\underbrace{(T-\lambda_k I)^{a_k}(v_k)}_{=0}
ight) \ &= \left(\prod_{i=1}^{k-1} (T-\lambda_i I)^{a_i}
ight)(v_1'+\cdots+v_{k-1}') \ &\vdots \ &= 0. \end{aligned}$$

où on a utilisé que $V_i \subseteq \ker(T-\lambda_i)^{a_i}$ par la partie a).

d) Si $v \in V$ est un vecteur propre de valeur propre $\lambda \notin \{\lambda_1, \ldots, \lambda_k\}$, remarquons que pour tout i, on a

$$(T-\lambda_i I)(v) = \underbrace{(\lambda-\lambda_i)}_{
eq 0} v$$
 $\Rightarrow \qquad (T-\lambda_i I)^{a_i}(v) = (\lambda-\lambda_i)^{a_i} v$
 $\Rightarrow \qquad \left(\prod_{i=1}^k (T-\lambda_i I)^{a_i}\right)(v) = \prod_{i=1}^k (\lambda-\lambda_i)^{a_i} v$
 $eq 0.$

e) On a montré que $\{\lambda_1, \ldots, \lambda_k\}$ contient toutes les valeurs propres de T (partie d)), et que chaque λ_i est une valeur propre. Si J est une forme normale de J ordan quelconque de T, on peut trouver une décomposition de T comme dans l'énoncé du lemme 6.15. de sorte que les λ_i sont précisément les éléments diagonaux de J.

Exercice 12. Soit $M \in \mathbb{C}^{n \times n}$ une matrice formée par des blocs de Jordan ayant chacun la même valeur λ sur la diagonale. Montrer que

- a) Le polynôme caractéristique de M est $p_M(t) = (\lambda t)^n$.
- b) Le polynôme minimal de M est $m_M(t) = (t \lambda)^k$, où k est la taille du plus gros bloc de Jordan.

En déduire, à l'aide d'un autre exercice de la série, que le polynôme minimal d'une matrice générale est $\prod_{i=1}^r (t-\lambda_i)^{k_i}$, si et seulement si la taille du plus gros bloc de Jordan associé à la valeur λ_i est k_i pour tout $i=1,\ldots,r$.

Solution. a) Clair : le déterminant d'une matrice triangulaire est le produit de ses éléments diagonaux.

b) Le polynôme minimal divisant forcément le polynôme caractéristique, il doit être de la forme $(\lambda - x)^k$ pour un certain $k \leq n$.

Remarquons que la matrice de $(M-\lambda I)^m$ est bloc-diagonale, avec des blocs du type $(B-\lambda I)^m$, où B est un bloc de Jordan associé à λ . L'application $B-\lambda I$ est l'application de décalage, dont les puissances devienne progressivement nulles. On vérifie sans peine que $(B-\lambda I)^m$ est nulle si et seulement si m est supérieur à la taille du bloc B.

En outre, $(M - \lambda I)^m$ est nulle si et seulement si m est supérieur à la taille de chaque bloc. En particulier, le m minimal est celui correspondant au plus gros bloc constituant M.

Considérons désormais une matrice générale M et sa forme de Jordan J. Le polynôme minimal de M divise celui de J et vice versa : ils sont donc égaux car leur coefficient dominant est 1.

De surcroît, le polynôme minimal de J divise son polynôme caractéristique par Cayley-Hamilton, et il est donc de la forme $\prod_{i=1}^r (t-\lambda_i)^{k_i}$ pour certains k_i .

$$Posons~J=egin{pmatrix} J_{\lambda} & & & & & \\ & \ddots & & & \\ & & J_{\mu} \end{pmatrix}$$
 , où chaque J_{λ} est bloc-diagonale construite à partir

des blocs de Jordan de J associés à λ (attention : J_{λ} n'est pas forcément un bloc de Jordan).

On vérifie alors que

Remarquons que $(J_{\lambda} - \lambda_i I)^{k_i}$ est triangulaire supérieure, de diagonale $(\lambda - \lambda_i)^{k_i} \neq 0$ si $\lambda \neq \lambda_i$. Les matrices $(J_{\lambda} - \lambda_i I)^{k_i}$ sont donc inversibles dès que $\lambda_i \neq \lambda$. Par conséquent, $\prod_{i=1}^r (J - \lambda_i I)^{k_i}$ est la matrice nulle si et seulement si chaque bloc $(J_{\lambda} - \lambda I)^k$ est nul. Le point b) permet alors de conclure.

Exercice 13. (*) Soit $A \in \mathbb{C}^{n \times n}$ et soient J une forme normale de Jordan de A, P la matrice de passage associée $(A = PJP^{-1})$.

- 1. Soient $B_1, ..., B_k$ l'ensemble des blocs de J associés à une même valeur propre λ . Montrer que dim $\text{Im}(J \lambda I) = n k$.
- 2. En déduire que le nombre de blocs de J associés à une valeur propre λ est égal à sa multiplicité géométrique dim $\ker(A \lambda I)$.

3. Montrer que si A est diagonalisable, chaque bloc de Jordan est de taille 1 et la décomposition $A=PJP^{-1}$ est exactement sa diagonalisation.

Solution.