
Advanced Probability and Applications EPFL - Spring Semester 2022-2023

Midterm exam: solutions

Please pay attention to the presentation of your answers! (2 points)

Exercise 1. Quiz. (18 points)

Answer each yes/no question below (1 pt) and provide a short justification (proof or counter-
example) for your answer (2 pts).

a) Let X,Y be two random variables defined on a common probability space (Ω,F ,P) and let
G = σ(X) ∩ σ(Y ) [fact: it can be shown that G is a σ-field]. Is it true that {X ≤ Y } ∈ G ?

Answer: No. Take for example Ω = {1, 2, 3}, X(ω) = ω and Y (ω) = 2 for every ω ∈ Ω. Then
G = σ(X) ∩ σ(Y ) = σ(Y ) = {∅,Ω} , but {X ≤ Y } = {ω ∈ Ω : X(ω) ≤ Y (ω)} = {1, 2} 6∈ G.

b) Let X,Y be two independent random variables defined on a common probability space (Ω,F ,P).
Is it always true that σ(X + Y ) = σ(X,Y ) ?

Answer: No. Take for example Ω = {1, 2}2, X(ω) = ω1 and Y (ω) = −ω2. Then {X + Y =
0} = {(1, 1), (2, 2)}, and so σ(X + Y ) = σ({(1, 1), (2, 2)}, {(1, 2)}, {(2, 1)}) 6= σ(X,Y ) = P(Ω) (in
addition, note that the fact that X and Y are independent does not play a role here).

c) Let X be a continuous random variable whose pdf pX is a continuous function on R.
Let now Y = X2. Is it always true that the pdf pY is also a continuous function on R ?

Answer: No. Take for example X ∼ N (0, 1), whose pdf pX(x) = 1√
2πx

exp(−x2/2) is continuous.

Then Y = X2 has pdf

pY (y) =

{
1√
2πy

exp(−y/2) if y ≥ 0

0 if y < 0

which is discontinuous in y = 0.

d) Let F be a generic cdf. Is it always true that the function G : R→ [0, 1] defined as

G(t) = F (t3 + 3t2 + 3t+ 1), t ∈ R

is also a cdf ?

Answer: Yes. Actually, the map t 7→ t3 + 3t2 + 3t+ 1 = (t+ 1)3 is non-decreasing and going from
−∞ to +∞, thus the properties of the cdf F are preserved for G.

e) Let X,Y, Z be three square-integrable random variables defined on a common probability space
(Ω,F ,P), each with variance 2. Is it possible that Cov(X,Y ) = Cov(X,Z) = Cov(Y,Z) = −1 ?

Answer: Yes, as we can check that the covariance matrix of the random vector (X,Y, Z) is positive
semi-definite in this case:

2 (c21 + c22 + c23)− 2 (c1c2 + c1c3 + c2c3) = (c1 − c2)2 + (c1 − c3)2 + (c2 − c3)2 ≥ 0

for any c1, c2, c3 ∈ R.
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Other possibilities:
- take A,B,C i.i.d.∼ N (0, 1) random variables and X = A−B, Y = B − C, Z = C −A.
- take X,Y with Var 2 and Cov -1; take now Z = −X − Y .

f) Let (Xn, n ≥ 1) and (Yn, n ≥ 1) be two sequences of random variables that both converge in

probability to the same random variable X. Is it always true that Xn − Yn
P→

n→∞
0 ?

Answer: Yes. Indeed, we have for any ε > 0:

P({|Xn − Yn| ≥ ε}) = P({|Xn −X +X − Yn| ≥ ε}) ≤ P({|Xn −X| ≥ ε/2} ∪ {|Yn −X| ≥ ε/2})
≤ P({|Xn −X| ≥ ε/2}) + P({|Yn −X| ≥ ε/2}) →

n→∞
0

by the assumptions made.

Exercise 2. (15 points)

Let X,Y be two i.i.d. N (0, 1) random variables, and Z be independent of X,Y and such that
P{Z = +1}) = P{Z = −1}) = 1/2.

a) (X + Z Y, Y ) is a continuous random vector: compute its joint pdf.

Answer: The computation gives:

P({X + ZY ≤ t, Y ≤ s}) =

∫ s

−∞
dy pY (y)P({X + Zy ≤ t})

=

∫ s

−∞
dy pY (y)

(
1

2
P({X ≤ t− y}) +

1

2
P({X ≤ t+ y})

)
so

pX+ZY,Y (t, s) =
d2

dsdt
P({X + ZY ≤ t, Y ≤ s}) =

1

2
pY (s) (pX(t− s) + pX(t+ s))

b) Is it true X + Z Y is a Gaussian random variable ? Justify.

Answer: Yes. Because Y N (0, 1) and Z is independent of Y , ZY ∼ N (0, 1); then, the sum of two
independent Gaussians random variables is also Gaussian.

c) Is it true (X + Z Y, Y ) is a Gaussian random vector ? Justify.

Answer: No. Consider the linear combination X +ZY + Y = X + (1 +Z)Y . Conditioned on the
value of Z, this random variable is N (0, 1) or N (0, 5) (as an explicit computation of the pdf also
shows); certainly not a Gaussian.

d) Compute Cov(X + ZY, Y ).

Answer: As all random variables are centered, we get:

Cov(X + ZY, Y ) = E(XY + ZY 2) = E(X)E(Y ) + E(Z)E(Y 2) = 0
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e) Is it true that X + Z Y and Y are independent random variables ? Justify.

Answer: No. For example, P({X + ZY ≥ 0})P({Y ≥ 0}) = 1/4 by symmetry, but

P({X + ZY ≥ 0, Y ≥ 0}) =
1

2
P({X + Y ≥ 0, Y ≥ 0}) +

1

2
P({X − Y ≥ 0, Y ≥ 0})

= P({X ≥ Y, Y ≥ 0}) +
1

2
P({|X| ≤ Y, Y ≥ 0}) > 1
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Exercise 3. (15 + 3 points)

Hint for this exercise (not necessarily needed): For x ∈ R, exp(x) = limn→∞(1 + x/n)n.

Let X be a random variable whose characteristic function is given by φX(t) = max(1 − |t|, 0) for
t ∈ R.

Fact: φX is a characteristic function: we do not ask you to prove it.

a) Is X a continuous random variable ?

Answer: Yes, as
∫
R dt |φX(t)| < +∞.

b) What is the value of E(|X|) and E(X2) ?

Answer: E(|X|) = +∞, as φX is not differentiable in t = 0; therefore, E(X2) = +∞ also.

Let now (Xn, n ≥ 1) be a sequence of i.i.d. random variables such that Xn ∼ X for every n ≥ 1.

c) For n ≥ 1, define Yn =
X1 +X2 + . . .+Xn

n
. Compute the characteristic function of Yn.

Answer: By independence, we have

φYn(t) = φX1+...+Xn(t/n) = φX1(t/n) · · ·φXn(t/n) = (φX(t/n))n = (max(1− |t/n|, 0)n

d) Let n ≥ 1 be fixed. For what values of t ∈ R does it hold that φYn(t) = 0?

Answer: φYn(t) = 0 for |t| ≥ n.

e) Does there exist µ ∈ R such that Yn →
n→∞

µ almost surely ? Justify.

Answer: No. Two possible justifications here: 1) E(|X1|) = +∞ so by the (extension of the)
strong law of large numbers, Yn diverges a.s. 2) the characteristic function of Yn converges to
exp(−|t|) (cf. hint), which is the characteristic function of the Cauchy distribution. The limit of
Yn can therefore not be constant.

BONUS f*) Compute the distribution of X.

Answer: pX(x) =
1− cos(x)

π x2
=

1

2π

sin(x/2)2

(x/2)2
[this computation is not trivial].
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Exercise 4. (10 points)

Hint for this exercise: For X ∼ N (0, 1) and t ≥ 0, it holds that FX(t) ≥ 1− exp(−t2/2).

Let (σn, n ≥ 1) be a sequence of positive numbers and (Zn, n ≥ 1) be a sequence of independent
random variables such that Zn ∼ N (0, σ2n). Let also µ ∈ R and Xn = µ+ Zn for n ≥ 1.

a) Show that if σn →
n→∞

0, then Xn
P→

n→∞
µ.

Answer: In this case, we obtain by Chebyshev’s inequality with ϕ(x) = x2 that for any ε > 0:

P({|Xn − µ| ≥ ε}) = P({|Zn| ≥ ε}) =
E(Z2

n)

ε2
=
σ2n
ε2
→

n→∞
0

therefore the conclusion.

b) Assume now that σn = 1
log(n+1) for n ≥ 1. Is it true in this case that Xn →

n→∞
µ almost surely ?

If yes, prove it; if no, explain why.

Answer: Yes, indeed:

P({|Xn − µ| ≥ ε}) = P({|Zn| ≥ ε}) = P
({
|Z| ≥ ε

σn

})
where Z ∼ N (0, 1). Now, by the symmetry of Z and by the hint:

P
({
|Z| ≥ ε

σn

})
= 2P

({
Z ≥ ε

σn

})
= 2

(
1− FZ

(
ε

σn

))
≤ 2 exp(−ε2/2σ2n)

As σn = 1
log(n+1) , the above probability decays more than polynomially to 0, so∑

n≥1
P({|Xn − µ| ≥ ε}) < +∞

which allows to conclude by the Borel-Cantelli lemma that Xn →
n→∞

µ almost surely.

c) Does any of the conclusions of parts a) and b) rely on the fact that the random variables Zn are
independent ? Explain.

Answer: No. The independence assumption is clearly not needed in the previous computations
(for example, we could replace Zn by σn Z in all the above computations).
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