Midterm exam: solutions

Please pay attention to the presentation of your answers! (2 points)

Exercise 1. Quiz. (18 points)

Answer each yes/no question below (1 pt) and provide a short justification (proof or counterexample) for your answer (2 pts).
a) Let X, Y be two random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{G}=\sigma(X) \cap \sigma(Y)$ [fact: it can be shown that \mathcal{G} is a σ-field]. Is it true that $\{X \leq Y\} \in \mathcal{G}$?

Answer: No. Take for example $\Omega=\{1,2,3\}, X(\omega)=\omega$ and $Y(\omega)=2$ for every $\omega \in \Omega$. Then $\mathcal{G}=\sigma(X) \cap \sigma(Y)=\sigma(Y)=\{\emptyset, \Omega\}$, but $\{X \leq Y\}=\{\omega \in \Omega: X(\omega) \leq Y(\omega)\}=\{1,2\} \notin \mathcal{G}$.
b) Let X, Y be two independent random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Is it always true that $\sigma(X+Y)=\sigma(X, Y)$?

Answer: No. Take for example $\Omega=\{1,2\}^{2}, X(\omega)=\omega_{1}$ and $Y(\omega)=-\omega_{2}$. Then $\{X+Y=$ $0\}=\{(1,1),(2,2)\}$, and so $\sigma(X+Y)=\sigma(\{(1,1),(2,2)\},\{(1,2)\},\{(2,1)\}) \neq \sigma(X, Y)=\mathcal{P}(\Omega)$ (in addition, note that the fact that X and Y are independent does not play a role here).
c) Let X be a continuous random variable whose $\operatorname{pdf} p_{X}$ is a continuous function on \mathbb{R}. Let now $Y=X^{2}$. Is it always true that the pdf p_{Y} is also a continuous function on \mathbb{R} ?
Answer: No. Take for example $X \sim \mathcal{N}(0,1)$, whose pdf $p_{X}(x)=\frac{1}{\sqrt{2 \pi x}} \exp \left(-x^{2} / 2\right)$ is continuous. Then $Y=X^{2}$ has pdf

$$
p_{Y}(y)= \begin{cases}\frac{1}{\sqrt{2 \pi y}} \exp (-y / 2) & \text { if } y \geq 0 \\ 0 & \text { if } y<0\end{cases}
$$

which is discontinuous in $y=0$.
d) Let F be a generic cdf. Is it always true that the function $G: \mathbb{R} \rightarrow[0,1]$ defined as

$$
G(t)=F\left(t^{3}+3 t^{2}+3 t+1\right), \quad t \in \mathbb{R}
$$

is also a cdf?
Answer: Yes. Actually, the map $t \mapsto t^{3}+3 t^{2}+3 t+1=(t+1)^{3}$ is non-decreasing and going from $-\infty$ to $+\infty$, thus the properties of the cdf F are preserved for G.
e) Let X, Y, Z be three square-integrable random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$, each with variance 2 . Is it possible that $\operatorname{Cov}(X, Y)=\operatorname{Cov}(X, Z)=\operatorname{Cov}(Y, Z)=-1$?

Answer: Yes, as we can check that the covariance matrix of the random vector (X, Y, Z) is positive semi-definite in this case:

$$
2\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right)-2\left(c_{1} c_{2}+c_{1} c_{3}+c_{2} c_{3}\right)=\left(c_{1}-c_{2}\right)^{2}+\left(c_{1}-c_{3}\right)^{2}+\left(c_{2}-c_{3}\right)^{2} \geq 0
$$

for any $c_{1}, c_{2}, c_{3} \in \mathbb{R}$.

Other possibilities:

- take A, B, C i.i.d. $\sim \mathcal{N}(0,1)$ random variables and $X=A-B, Y=B-C, Z=C-A$.
- take X, Y with Var 2 and Cov -1; take now $Z=-X-Y$.
f) Let $\left(X_{n}, n \geq 1\right)$ and $\left(Y_{n}, n \geq 1\right)$ be two sequences of random variables that both converge in probability to the same random variable X. Is it always true that $X_{n}-Y_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow[P]{P}} 0$?

Answer: Yes. Indeed, we have for any $\varepsilon>0$:

$$
\begin{aligned}
\mathbb{P}\left(\left\{\left|X_{n}-Y_{n}\right| \geq \varepsilon\right\}\right) & =\mathbb{P}\left(\left\{\left|X_{n}-X+X-Y_{n}\right| \geq \varepsilon\right\}\right) \leq \mathbb{P}\left(\left\{\left|X_{n}-X\right| \geq \varepsilon / 2\right\} \cup\left\{\left|Y_{n}-X\right| \geq \varepsilon / 2\right\}\right) \\
& \leq \mathbb{P}\left(\left\{\left|X_{n}-X\right| \geq \varepsilon / 2\right\}\right)+\mathbb{P}\left(\left\{\left|Y_{n}-X\right| \geq \varepsilon / 2\right\}\right) \underset{n \rightarrow \infty}{\rightarrow} 0
\end{aligned}
$$

by the assumptions made.

Exercise 2. (15 points)

Let X, Y be two i.i.d. $\mathcal{N}(0,1)$ random variables, and Z be independent of X, Y and such that $\mathbb{P}\{Z=+1\})=\mathbb{P}\{Z=-1\})=1 / 2$.
a) $(X+Z Y, Y)$ is a continuous random vector: compute its joint pdf.

Answer: The computation gives:

$$
\begin{aligned}
\mathbb{P}(\{X+Z Y \leq t, Y \leq s\}) & =\int_{-\infty}^{s} d y p_{Y}(y) \mathbb{P}(\{X+Z y \leq t\}) \\
& =\int_{-\infty}^{s} d y p_{Y}(y)\left(\frac{1}{2} \mathbb{P}(\{X \leq t-y\})+\frac{1}{2} \mathbb{P}(\{X \leq t+y\})\right)
\end{aligned}
$$

so

$$
p_{X+Z Y, Y}(t, s)=\frac{d^{2}}{d s d t} \mathbb{P}(\{X+Z Y \leq t, Y \leq s\})=\frac{1}{2} p_{Y}(s)\left(p_{X}(t-s)+p_{X}(t+s)\right)
$$

b) Is it true $X+Z Y$ is a Gaussian random variable? Justify.

Answer: Yes. Because $Y \mathcal{N}(0,1)$ and Z is independent of $Y, Z Y \sim \mathcal{N}(0,1)$; then, the sum of two independent Gaussians random variables is also Gaussian.
c) Is it true $(X+Z Y, Y)$ is a Gaussian random vector ? Justify.

Answer: No. Consider the linear combination $X+Z Y+Y=X+(1+Z) Y$. Conditioned on the value of Z, this random variable is $\mathcal{N}(0,1)$ or $\mathcal{N}(0,5)$ (as an explicit computation of the pdf also shows); certainly not a Gaussian.
d) Compute $\operatorname{Cov}(X+Z Y, Y)$.

Answer: As all random variables are centered, we get:

$$
\operatorname{Cov}(X+Z Y, Y)=\mathbb{E}\left(X Y+Z Y^{2}\right)=\mathbb{E}(X) \mathbb{E}(Y)+\mathbb{E}(Z) \mathbb{E}\left(Y^{2}\right)=0
$$

e) Is it true that $X+Z Y$ and Y are independent random variables? Justify.

Answer: No. For example, $\mathbb{P}(\{X+Z Y \geq 0\}) \mathbb{P}(\{Y \geq 0\})=1 / 4$ by symmetry, but

$$
\begin{aligned}
\mathbb{P}(\{X+Z Y \geq 0, Y \geq 0\}) & =\frac{1}{2} \mathbb{P}(\{X+Y \geq 0, Y \geq 0\})+\frac{1}{2} \mathbb{P}(\{X-Y \geq 0, Y \geq 0\}) \\
& =\mathbb{P}(\{X \geq Y, Y \geq 0\})+\frac{1}{2} \mathbb{P}(\{|X| \leq Y, Y \geq 0\})>\frac{1}{4}
\end{aligned}
$$

Exercise 3. ($15+3$ points)

Hint for this exercise (not necessarily needed): For $x \in \mathbb{R}, \exp (x)=\lim _{n \rightarrow \infty}(1+x / n)^{n}$.

Let X be a random variable whose characteristic function is given by $\phi_{X}(t)=\max (1-|t|, 0)$ for $t \in \mathbb{R}$.

Fact: ϕ_{X} is a characteristic function: we do not ask you to prove it.
a) Is X a continuous random variable ?

Answer: Yes, as $\int_{\mathbb{R}} d t\left|\phi_{X}(t)\right|<+\infty$.
b) What is the value of $\mathbb{E}(|X|)$ and $\mathbb{E}\left(X^{2}\right)$?

Answer: $\mathbb{E}(|X|)=+\infty$, as ϕ_{X} is not differentiable in $t=0$; therefore, $\mathbb{E}\left(X^{2}\right)=+\infty$ also.

Let now ($X_{n}, n \geq 1$) be a sequence of i.i.d. random variables such that $X_{n} \sim X$ for every $n \geq 1$.
c) For $n \geq 1$, define $Y_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}$. Compute the characteristic function of Y_{n}.

Answer: By independence, we have

$$
\phi_{Y_{n}}(t)=\phi_{X_{1}+\ldots+X_{n}}(t / n)=\phi_{X_{1}}(t / n) \cdots \phi_{X_{n}}(t / n)=\left(\phi_{X}(t / n)\right)^{n}=\left(\max (1-|t / n|, 0)^{n}\right.
$$

d) Let $n \geq 1$ be fixed. For what values of $t \in \mathbb{R}$ does it hold that $\phi_{Y_{n}}(t)=0$?

Answer: $\phi_{Y_{n}}(t)=0$ for $|t| \geq n$.
e) Does there exist $\mu \in \mathbb{R}$ such that $Y_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow} \mu$ almost surely ? Justify.

Answer: No. Two possible justifications here: 1) $\mathbb{E}\left(\left|X_{1}\right|\right)=+\infty$ so by the (extension of the) strong law of large numbers, Y_{n} diverges a.s. 2) the characteristic function of Y_{n} converges to $\exp (-|t|)$ (cf. hint), which is the characteristic function of the Cauchy distribution. The limit of Y_{n} can therefore not be constant.

BONUS \mathbf{f}^{*}) Compute the distribution of X.
Answer: $p_{X}(x)=\frac{1-\cos (x)}{\pi x^{2}}=\frac{1}{2 \pi} \frac{\sin (x / 2)^{2}}{(x / 2)^{2}}$ [this computation is not trivial].

Exercise 4. (10 points)

Hint for this exercise: For $X \sim \mathcal{N}(0,1)$ and $t \geq 0$, it holds that $F_{X}(t) \geq 1-\exp \left(-t^{2} / 2\right)$.

Let ($\sigma_{n}, n \geq 1$) be a sequence of positive numbers and ($Z_{n}, n \geq 1$) be a sequence of independent random variables such that $Z_{n} \sim \mathcal{N}\left(0, \sigma_{n}^{2}\right)$. Let also $\mu \in \mathbb{R}$ and $X_{n}=\mu+Z_{n}$ for $n \geq 1$.
a) Show that if $\sigma_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow} 0$, then $X_{n} \underset{n \rightarrow \infty}{\mathbb{P}} \mu$.

Answer: In this case, we obtain by Chebyshev's inequality with $\varphi(x)=x^{2}$ that for any $\varepsilon>0$:

$$
\mathbb{P}\left(\left\{\left|X_{n}-\mu\right| \geq \varepsilon\right\}\right)=\mathbb{P}\left(\left\{\left|Z_{n}\right| \geq \varepsilon\right\}\right)=\frac{\mathbb{E}\left(Z_{n}^{2}\right)}{\varepsilon^{2}}=\frac{\sigma_{n}^{2}}{\varepsilon^{2}} \underset{n \rightarrow \infty}{\rightarrow} 0
$$

therefore the conclusion.
b) Assume now that $\sigma_{n}=\frac{1}{\log (n+1)}$ for $n \geq 1$. Is it true in this case that $X_{n} \xrightarrow[n \rightarrow \infty]{\rightarrow} \mu$ almost surely ? If yes, prove it; if no, explain why.
Answer: Yes, indeed:

$$
\mathbb{P}\left(\left\{\left|X_{n}-\mu\right| \geq \varepsilon\right\}\right)=\mathbb{P}\left(\left\{\left|Z_{n}\right| \geq \varepsilon\right\}\right)=\mathbb{P}\left(\left\{|Z| \geq \frac{\varepsilon}{\sigma_{n}}\right\}\right)
$$

where $Z \sim \mathcal{N}(0,1)$. Now, by the symmetry of Z and by the hint:

$$
\mathbb{P}\left(\left\{|Z| \geq \frac{\varepsilon}{\sigma_{n}}\right\}\right)=2 \mathbb{P}\left(\left\{Z \geq \frac{\varepsilon}{\sigma_{n}}\right\}\right)=2\left(1-F_{Z}\left(\frac{\varepsilon}{\sigma_{n}}\right)\right) \leq 2 \exp \left(-\varepsilon^{2} / 2 \sigma_{n}^{2}\right)
$$

As $\sigma_{n}=\frac{1}{\log (n+1)}$, the above probability decays more than polynomially to 0 , so

$$
\sum_{n \geq 1} \mathbb{P}\left(\left\{\left|X_{n}-\mu\right| \geq \varepsilon\right\}\right)<+\infty
$$

which allows to conclude by the Borel-Cantelli lemma that $X_{n} \underset{n \rightarrow \infty}{\rightarrow} \mu$ almost surely.
c) Does any of the conclusions of parts a) and b) rely on the fact that the random variables Z_{n} are independent? Explain.

Answer: No. The independence assumption is clearly not needed in the previous computations (for example, we could replace Z_{n} by $\sigma_{n} Z$ in all the above computations).

