Advanced Probability and Applications

Midterm exam

Please pay attention to the presentation of your answers! (2 points)

Exercise 1. Quiz. (18 points)

Answer each yes/no question below (1 pt) and provide a short justification (proof or counterexample) for your answer (2 pts).

a) Let X, Y be two random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\mathcal{G} = \sigma(X) \cap \sigma(Y)$ [fact: it can be shown that \mathcal{G} is a σ -field]. Is it true that $\{X \leq Y\} \in \mathcal{G}$?

b) Let X, Y be two independent random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Is it always true that $\sigma(X + Y) = \sigma(X, Y)$?

c) Let X be a continuous random variable whose pdf p_X is a continuous function on \mathbb{R} . Let now $Y = X^2$. Is it always true that the pdf p_Y is also a continuous function on \mathbb{R} ?

d) Let F be a generic cdf. Is it always true that the function $G: \mathbb{R} \to [0,1]$ defined as

$$G(t) = F(t^3 + 3t^2 + 3t + 1), \quad t \in \mathbb{R}$$

is also a cdf?

e) Let X, Y, Z be three square-integrable random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$, each with variance 2. Is it possible that Cov(X, Y) = Cov(X, Z) = Cov(Y, Z) = -1?

f) Let $(X_n, n \ge 1)$ and $(Y_n, n \ge 1)$ be two sequences of random variables that both converge in probability to the same random variable X. Is it always true that $X_n - Y_n \xrightarrow{\mathbb{P}} 0$?

Exercise 2. (15 points)

Let X, Y be two i.i.d. $\mathcal{N}(0, 1)$ random variables, and Z be independent of X, Y and such that $\mathbb{P}\{Z = +1\} = \mathbb{P}\{Z = -1\} = 1/2.$

a) (X + ZY, Y) is a continuous random vector: compute its joint pdf.

- **b)** Is it true X + ZY is a Gaussian random variable ? Justify.
- c) Is it true (X + ZY, Y) is a Gaussian random vector ? Justify.
- d) Compute Cov(X + ZY, Y).
- e) Is it true that X + ZY and Y are independent random variables? Justify.

Exercise 3. (15 + 3 points)

Hint for this exercise (not necessarily needed): For $x \in \mathbb{R}$, $\exp(x) = \lim_{n \to \infty} (1 + x/n)^n$.

Let X be a random variable whose characteristic function is given by $\phi_X(t) = \max(1 - |t|, 0)$ for $t \in \mathbb{R}$.

Fact: ϕ_X is a characteristic function: we do not ask you to prove it.

a) Is X a continuous random variable?

b) What is the value of $\mathbb{E}(|X|)$ and $\mathbb{E}(X^2)$?

Hint: You do not need to compute the distribution of X in order to answer the two previous questions, but please justify your answers !

Let now $(X_n, n \ge 1)$ be a sequence of i.i.d. random variables such that $X_n \sim X$ for every $n \ge 1$.

c) For $n \ge 1$, define $Y_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$. Compute the characteristic function of Y_n .

d) Let $n \ge 1$ be fixed. For what values of $t \in \mathbb{R}$ does it hold that $\phi_{Y_n}(t) = 0$?

e) Does there exist $\mu \in \mathbb{R}$ such that $Y_n \xrightarrow[n \to \infty]{} \mu$ almost surely ? Justify.

BONUS f^*) Compute the distribution of X.

Exercise 4. (10 points)

Hint for this exercise: For $X \sim \mathcal{N}(0,1)$ and $t \ge 0$, it holds that $F_X(t) \ge 1 - \exp(-t^2/2)$.

Let $(\sigma_n, n \ge 1)$ be a sequence of positive numbers and $(Z_n, n \ge 1)$ be a sequence of independent random variables such that $Z_n \sim \mathcal{N}(0, \sigma_n^2)$. Let also $\mu \in \mathbb{R}$ and $X_n = \mu + Z_n$ for $n \ge 1$.

a) Show that if $\sigma_n \xrightarrow[n \to \infty]{} 0$, then $X_n \xrightarrow[n \to \infty]{} \mu$.

b) Assume now that $\sigma_n = \frac{1}{\log(n+1)}$ for $n \ge 1$. Is it true in this case that $X_n \xrightarrow[n \to \infty]{} \mu$ almost surely ? If yes, prove it; if no, explain why.

c) Does any of the conclusions of parts a) and b) rely on the fact that the random variables Z_n are independent? Explain.