
Solutions to Graded Homework 2 (HW6)
CS-526 Learning Theory

Problem 1. Gradient Descent for Positive Semi-definite Matrices

1. Use the spectral decomposition B =
∑n

j=1 λjuju
T
j and since B is positive definite all

λj > 0 (and we can take eigenvectors with real components). Then

F (X) =
n∑

j=1

λjTrX
Tuju

T
j X =

n∑
j=1

λjTr(X
Tuj)(X

Tuj)
T

=
n∑

j=1

λj(X
Tuj)

T (XTuj) =
n∑

j=1

λj∥XTuj∥2 ≥ 0

since λj > 0 for all j.

2. We find

f
′′
(s) = 2TrXTBX + 2TrY TBY − TrXTBY − TrY TBX

= 2Tr(X − Y )TB(X − Y ) ≥ 0

Thus f is convex. Since f(s) = f((1− s).0 + s.1) we have f(s) ≤ (1− s)f(0) + sf(1).
This inequality reads

F ((sX + (1− s)Y ) ≤ sF (X) + (1− s)F (Y )

3. The gradient of F (X) is the matrix

∇XF (X) = BX

This can be computed using components ∂
∂Xij

F (X). Since F is convex it is above its

tangent and this shows (see class)

F (Y )− F (X) ≥ ⟨∇XF (X), Y −X⟩ = Tr(BX)T (Y −X)

Note the last result can also be found working with components.

The function is not Lipschitz because the gradient BX is not bounded (locally it is
Lipschitz but we did not talk about this in class).

4. For L the gradient is ∇L(X) = BX + AX − A. The gradient descent algorithm is as
follows: initialize with X1 and for t = 1, · · · , T do

Xt+1 = Xt − η(BXt + AXt − A)

1



Summing over t = 1, · · · , T we get

1

T
(XT+1 −X1) = −η((B + A)

1

T

T∑
t=1

Xt − A)

Since we assume ∥Xt∥ ≤ M uniformly in t, we can use ∥X1∥ ≤ M and ∥XT+1∥ ≤ M
to get

∥ 1
T

T∑
t=1

Xt − (B + A)−1A∥ ≤ 2M

ηT
∥(B + A)−1∥

Problem 2. Gradient Descent

Let S−1 = UTΛ−1U with U an orthogonal matrix, and Λ = Diag (λ1 · · ·λd). With x̄ =
1
T

∑T
t=1 x

t, we have

f(x̄)− f (x∗) ⩽
1

T

T∑
t=1

(
f
(
xt
)
− f (x∗)

)
convexity

⩽
1

T

T∑
t=1

〈
∇f

(
xt
)
, xt − x∗〉 convexity

=
1

T

T∑
t=1

〈
U∇f

(
xt
)
, Uxt − Ux∗〉

=
d∑

k=1

1

T

T∑
t=1

(U∇f)k(x
t)
(
U
(
xt − x∗))

k

=
d∑

k=1

λk

ηT

T∑
t=1

(
η

λk

)
(U∇f)k(x

t)
(
U
(
xt − x∗))

k

=
d∑

k=1

λk

2ηT

T∑
t=1

{
−
((

U
(
xt − x∗))

k
− η

λk

(U∇f)k(x
t)

)2

+
(
U
(
xt − x∗))2

k
+

η2

λ2
k

(U∇f )k (x
t)2

}

Now, from the backward equation we have:

xt+1 = xt − ηUTΛ−1U∇(xt)

⇒ Uxt+1 = Uxt − ηΛ−1U∇f(xt)(
Uxt+1

)
k
=

(
Uxt

)
k
− η

λk

(U∇f)k(x
t)

2



From which we get

f(x̄)− f (x∗) ≤
d∑

k=1

λk

2ηT

T∑
t=1

{
−
(
U
(
xt+1 − x∗))2

k
+
(
U
(
xt − x∗))2

k
+

η2

λ2
k

(U∇f )k (x
t)2

}

=
d∑

k=1

λk

2ηT

[(
U
(
x1 − x∗))2

k
−
(
U
(
xT+1 − x∗))2

k

]
+

d∑
k=1

λk

2ηT

T∑
t=1

η2

λ2
k

(U∇f)k(x
t)2

≤ λmax

2ηT

d∑
k=1

(
U
(
x1 − x∗))2

k
+

η

2Tλmin

T∑
t=1

∥U∇f∥2

=
λmax

2ηT

∥∥U (
x1 − x∗)∥∥2

+
η

2λmin

∥∇f∥2

≤ λmax

2ηT
R2 +

η

2λmin

ρ2

where we used that x1 = 0 and ∥x∗∥2 ≤ R2 (by assumption) in the last inequality.
Set

η2 =
λmaxλminR

2

ρ2T

Then, we find:

f(x̄)− f (x∗) ≤ λmaxR
2ρ
√
T

2
√
λmaxλminRT

+

√
λmaxλminR

ρ
√
T

ρ2

2λmin

=

√
λmax

λmin

ρR

2
√
T

+

√
λmax

λmin

ρR

2
√
T

=

√
λmax

λmin

ρR√
T

Problem 6. (adapted from 14.3, Understanding Machine Learning)

1. We have min∥w∥≤∥w∗∥ f(w) ≤ f(w∗) ≤ 0 because ∀i ∈ [m] : yi⟨w∗,xi⟩ ≥ 1. Suppose
there exists w satisfying both ∥w∥ ≤ ∥w∗∥ and f(w) < 0. Then w can be slightly
modify to obtain a vector w̃ such that ∥w̃∥ < ∥w∗∥, while still having f(w̃) ≤ 0. It con-
tradicts w∗’s definition, hence min∥w∥≤∥w∗∥ f(w) ≥ 0. It proves min∥w∥≤∥w∗∥ f(w) = 0.

2. If f(w) < 1 then ∀i ∈ [m] : yi⟨w∗,xi⟩ > 0, i.e., w separates the examples.

3. For all i ∈ [m] the gradient of fi : w 7→ 1 − yi⟨w,xi⟩ is −yixi. Applying Claim 14.6,
we get that a subgradient of f at w is given by −yi∗xi∗ where i∗ ∈ argmaxi∈[m]{1 −
yi⟨w,xi⟩}.

4. The algorithm is inialized with w(1) = 0. At each iteration, if f(w(t)) ≥ 1 then it
chooses i∗ ∈ argmini∈[m]{yi⟨w(t),xi⟩} and updates w(t+1) = w(t) + ηyi∗xi∗ . Otherwise,

if f(w(t)) < 1, w(t) separates all the examples and we stop. To analyze the speed of

3



convergence of the subgradient algorithm, first notice that ⟨w∗,w(t+1)⟩ − ⟨w∗,w(t)⟩ =
ηyi∗⟨w∗,xi∗⟩ ≥ η. Therefore, after performing T iterations, we have

⟨w∗,w(T+1)⟩ = ⟨w∗,w(T+1)⟩ − ⟨w∗,w(1)⟩ =
T∑
t=1

⟨w∗,w(t+1)⟩ − ⟨w∗,w(t)⟩ ≥ ηT . (1)

Besides, ∥w(t+1)∥2 = ∥w(t)∥2 + η2y2i∗∥xi∥2 + 2ηyi⟨w(t),xi∗⟩ ≤ ∥w(t)∥2 + η2R2. The last
inequality follows from ∥xi∥ ≤ R and yi⟨w(t),xi∗⟩ ≤ 0 (we update only if f(w(t)) ≥ 1).
Then

∥w(T+1)∥ ≤ ηR
√
T . (2)

Combining Cauchy-Schwarz inequality, (1) and (2), we obtain

1 ≥ ⟨w∗,w(T+1)⟩
∥w(T+1)∥∥w∗∥

≥
√
T

R∥w∗∥
. (3)

The subgradient algorithm must stop in less than R2∥w∗∥2 iterations. We see that η
does not affect the speed of convergence.

5. The algorithm is almost identical to the Batch Perceptron algorithm with two modifica-
tions. First, the Batch Perceptron updates with any example for which yi⟨w(t),xi⟩ ≤ 0,
while the current algorithm chooses the example for which yi⟨w(t),xi⟩ is minimal. Sec-
ond, the current algorithm employs the parameter η. However, the only difference with
the case η = 1 is that it scales w(t) by η.

4


