Problem 1. Gradient Descent for Positive Semi-definite Matrices

Let $X, Y \in \mathbb{R}^{n \times n}$ be $n \times n$ real matrices and $A, B \in \mathbb{R}^{n \times n}$ be $n \times n$ real symmetric and positive definite matrices. Let $F: \mathbb{R}^{n \times n} \mapsto \mathbb{R}$ the function $F(X)=\frac{1}{2} \operatorname{Tr} X^{T} B X$.

1. Show that $F(X) \geq 0$ for any X.
2. Compute the second derivative of

$$
f(s)=\operatorname{Tr}\left(s X^{T}+(1-s) Y^{T}\right) B(s X+(1-s) Y)
$$

for $s \in[0,1]$ and deduce that F is a convex function.
3. Deduce the inequality $F(Y)-F(X) \geq \operatorname{Tr} X^{T} B(Y-X)$. Is F Lipschitz?
4. Consider now the function $G: \mathbb{R}^{n \times n} \mapsto \mathbb{R}$ with $G(X)=\frac{1}{2} \operatorname{Tr}(X-I)^{T} A(X-I)$ where I is the identity matrix. Define $L(X)=F(X)+G(X)$.
(a) Write down the gradient descent algorithm for L. Call X_{t} the updated matrix at time t.
(b) Assume that the operator norm $\left\|X_{t}\right\| \leq M$ stays bounded uniformly in t. Show that

$$
\left\|\frac{1}{T} \sum_{t=1}^{T} X_{t}-(B+A)^{-1} A\right\| \leq \frac{2 M}{\eta T}\left\|(B+A)^{-1}\right\|
$$

Problem 2. Gradient Descent.

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a convex Lipshitz continuous differentiable function with Lipshitz constant $\rho>0$. Let S be a real symmetric strictly positive-definite $d \times d$ matrix with smallest eigenvalue $\lambda_{\min }>0$. We consider a gradient descent iteration for $t \geq 1$ and step size $\eta>0$:

$$
\begin{equation*}
x^{t+1}=x^{t}-\eta S^{-1} \nabla f\left(x^{t}\right) \tag{1}
\end{equation*}
$$

with initial condition $x^{1}=0$. Further, define $x^{*}=\operatorname{argmin}_{\|x\| \in B(0, R)} f(x)$, where $B(0, R)$ is the ball of radius R.

1. Show that if we choose the step size $\eta=\frac{R \sqrt{\lambda_{\text {max }} \lambda_{\text {min }}}}{\rho \sqrt{T}}$ after T iterations we have

$$
f\left(\frac{1}{T} \sum_{t=1}^{T} x^{t}\right)-f\left(x^{*}\right) \leq \frac{\rho R}{\sqrt{T}} \sqrt{\frac{\lambda_{\max }}{\lambda_{\min }}}
$$

Hint: recall that in class we proved this statement when $S=I$ the identity matrix. Here you can use an eigenvalue decomposition $S^{-1}=U^{T} \Lambda^{-1} U$. The following is also useful:

$$
\left\langle\underline{\nabla} f\left(x^{t}\right), x^{t}-x^{*}\right\rangle=\left\langle U \nabla f\left(x^{t}\right), U x^{t}-U x^{*}\right\rangle=\sum_{k=1}^{d}(U \nabla f)_{k}\left(x^{t}\right)\left(U x^{t}-U x^{*}\right)_{k}
$$

Justify why these steps can be used.

Problem 3. (adapted from 14.3, Understanding Machine Learning)

Let $S=\left(\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{m}, \mathbf{y}_{m}\right)\right) \in\left(\mathbb{R}^{d} \times\{-1,+1\}\right)^{m}$. Assume that there exists $\mathbf{w} \in \mathbb{R}^{d}$ such that for every $i \in[m]$ we have $y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \geq 1$, and let \mathbf{w}^{\star} be a vector that has the minimal norm among all vectors that satisfy the preceding requirement. Let $R=\max _{i}\left\|\mathbf{x}_{i}\right\|$. Define a function $f(\mathbf{w})=\max _{i \in[m]}\left(1-y_{i}\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle\right)$.

1. Show that $\min _{\mathbf{w}:\|\mathbf{w}\| \leq\|\mathbf{w} \star\|} f(\mathbf{w})=0$.
2. Show that any w for which $f(\mathbf{w})<1$ separates the examples in S.
3. Show how to calculate a subgradient of f.
4. Describe a subgradient descent algorithm for finding a w that separates the examples. Show that the number of iterations T of your algorithm satisfies

$$
T \leq R^{2}\left\|\mathbf{w}^{*}\right\|^{2}
$$

Hint: it is a good idea to take a look at the Batch Perceptron algorithm in Section 9.1.2. for the analysis.
5. (Not graded) Compare your algorithm to the Batch Perceptron algorithm.

