## Exercise Set 4: Solution Quantum Computation

## Exercise 1 Deutsch's algorithm

(a) The 4 oracle gates $U_{f}$ are given respectively by:
(1) For $f_{1}(x)=0$ :
$|x\rangle-|x\rangle$
$|y\rangle-|y\rangle=|y \oplus 0\rangle$
(2) For $f_{2}(x)=1$ :

$$
\begin{aligned}
& |x\rangle-|x\rangle \\
& |y\rangle-\overline{\mathrm{NOT}}-|\bar{y}\rangle=|y \oplus 1\rangle
\end{aligned}
$$

(4) For $f_{4}(x)=\bar{x}$ :

(b) The Deutsch circuit is the following:


Let us analyze the various states:

- Initially, the state of the 2 qubits is $\left|\psi_{0}\right\rangle=|0\rangle \otimes|1\rangle$.
- After passage through the first Hadamard gates, the state becomes

$$
\left|\psi_{1}\right\rangle=H|0\rangle \otimes H|1\rangle=\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle-|11\rangle)
$$

- After passage through the quantum oracle $U_{f}$, the state becomes

$$
\left|\psi_{2}\right\rangle=U_{f}\left|\psi_{1}\right\rangle=\frac{1}{2}(|0, f(0)\rangle-|0, \overline{f(0)}\rangle+|1, f(1)\rangle-|1, \overline{f(1)}\rangle)
$$

- Then, after passage of the first qubit through the Hadamard gate on the right, the state becomes:

$$
\begin{aligned}
\left|\psi_{3}\right\rangle=(H \otimes I)\left|\psi_{2}\right\rangle=\frac{1}{2^{3 / 2}} & (|0, f(0)\rangle+|1, f(0)\rangle-|0, \overline{f(0)}\rangle-|1, \overline{f(0)}\rangle \\
& +|0, f(1)\rangle-|1, f(1)\rangle-|0, \overline{f(1)}\rangle+|1, \overline{f(1)}\rangle) \\
=\frac{1}{2^{3 / 2}} & (|0, f(0)\rangle-|0, \overline{f(0)}\rangle+|0, f(1)\rangle-|0, \overline{f(1)}\rangle \\
& \quad|1, f(0)\rangle-|1, \overline{f(0)}\rangle-|1, f(1)\rangle+|1, \overline{f(1)}\rangle)
\end{aligned}
$$

after some reordering.

- Let us now analyze the state $\left|\psi_{3}\right\rangle$ in the two cases $f(0)=f(1)$ and $f(0) \neq f(1)$ :
- In the case where $f(0)=f(1)=x$, say, we get:

$$
\left|\psi_{3}\right\rangle=\frac{1}{2^{3 / 2}}(|0, x\rangle-|0, \bar{x}\rangle+|0, x\rangle-|0, \bar{x}\rangle)=\frac{1}{\sqrt{2}}(|0, x\rangle-|0, \bar{x}\rangle)
$$

- In the case where $f(0)=x$ and $f(1)=\bar{x}$, say, we get:

$$
\left|\psi_{3}\right\rangle=\frac{1}{2^{3 / 2}}(|1, x\rangle-|1, \bar{x}\rangle-|1, \bar{x}\rangle+|1, x\rangle)=\frac{1}{\sqrt{2}}(|1, x\rangle-|1, \bar{x}\rangle)
$$

- So finally, measuring the value of the first qubit, we obtain either $|0\rangle$ or $|1\rangle$ (each time with probability 1 ), which allows us to decide between the two alternatives.


## Exercise 2 Bernstein-Vazirani's algorithm

(a) We reuse here the same circuit as in the lecture for the Deutsch-Josza algorithm:


The only thing that changes here is the prior information we have on the function $f$. The output state of the circuit (before the measurement) is given by

$$
\begin{aligned}
\left|\psi_{4}\right\rangle & =\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} \sum_{y \in\{0,1\}^{n}}(-1)^{f(x)+x \cdot y}|y\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
& =\sum_{y \in\{0,1\}^{n}}\left(\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot(a+y)}\right)|y\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

So after the measurement of the first $n$ qubits, the outcome is state $|y\rangle$ with probability

$$
\operatorname{prob}(|y\rangle)=\left|\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot(a+y)}\right|^{2}
$$

which is equal to 1 if $y=a$ and 0 in all the other cases. Therefore the result.
(b) When adding bit $b$ to the picture, we obtain

$$
\begin{aligned}
\operatorname{prob}(|y\rangle) & =\left|\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{b \oplus x \cdot(a+y)}\right|^{2} \\
& =\left|\frac{1}{2^{n}}(-1)^{b} \sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot(a+y)}\right|^{2}=\left|\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot(a+y)}\right|^{2}
\end{aligned}
$$

(i) The probabilities remain therefore the same as in the absence of $b$ (which just adds a global phase), so the vector $a$ can be equally determined.
(ii) On the contrary, $b$ remains unknown with this scheme.

Exercise 3 IBM Q practice: Implementation and tests with the Toffoli gate
Please refer to the output histograms on Moodle.

