Exercise Set 4: Solution
Quantum Computation

Exercise 1 Deutsch’s algorithm

(a) The 4 oracle gates Uy are given respectively by:
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(b) The Deutsch circuit is the following:
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Let us analyze the various states:
e Initially, the state of the 2 qubits is |¢y) = |0) ® |1).

o After passage through the first Hadamard gates, the state becomes
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o After passage through the quantum oracle Uy, the state becomes
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e Then, after passage of the first qubit through the Hadamard gate on the right, the
state becomes:
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after some reordering.
e Let us now analyze the state |¢3) in the two cases f(0) = f(1) and f(0) # f(1):
— In the case where f(0) = f(1) = z, say, we get:

i) = 573 (10.2) = 0.3) + [0.2) = 10.7) ) = = (10.2) ~ [0.7)

— In the case where f(0) = z and f(1) =7, say, we get:
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e So finally, measuring the value of the first qubit, we obtain either |0) or |1) (each
time with probability 1), which allows us to decide between the two alternatives.

Exercise 2 Bernstein-Vazirani’s algorithm

(a) We reuse here the same circuit as in the lecture for the Deutsch-Josza algorithm:
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The only thing that changes here is the prior information we have on the function f.
The output state of the circuit (before the measurement) is given by
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So after the measurement of the first n qubits, the outcome is state |y) with probability
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which is equal to 1 if y = @ and 0 in all the other cases. Therefore the result.

(b) When adding bit b to the picture, we obtain
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(i) The probabilities remain therefore the same as in the absence of b (which just adds
a global phase), so the vector a can be equally determined.

(ii) On the contrary, b remains unknown with this scheme.

Exercise 3 IBM @ practice: Implementation and tests with the Toffoli gate

Please refer to the output histograms on Moodle.



