Problem Set 4

Problem 1: Expecation and CDF

a) Let X be a continuous and non-negative random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that

$$\mathbb{E}(X) = \int_0^{+\infty} (1 - F_X(t)) dt.$$

Extend this formula to further to any continuous random variable X. That is, show that

$$\mathbb{E}(X) = \int_0^{+\infty} (1 - F_X(t)) dt - \int_{-\infty}^0 F_X(t) dt.$$

- b) Use this formula to compute $\mathbb{E}(X)$ for $X \sim \text{Laplace}(0, \lambda^{-1})$ for $\lambda > 0$.
- c) Let X be a discrete and non-negative random variable taking values in \mathbb{N} only. Show that

$$\mathbb{E}(X) = \sum_{k>0} (1 - F_X(k)).$$

and use this new formula to compute $\mathbb{E}(X)$ when $X \sim \text{Geom}(p)$ for some 0 .

Problem 2: Expectation and exponential random variable

Let $\lambda > 0$ and $X \sim \mathcal{E}(\lambda)$, and let us define $Y = X^a$, where $a \in \mathbb{R}$.

- a) For what values of $a \in \mathbb{R}$ does it hold that $\mathbb{E}(Y) < +\infty$?
- b) For what values of $a \in \mathbb{R}$ does it hold that $\mathbb{E}(Y^2) < +\infty$?
- c) For what values of $a \in \mathbb{R}$ is Var(Y):
 - c1) well-defined and finite? c2) well-defined but infinite?
- c3) ill-defined?
- d) Compute $\mathbb{E}(Y)$ and $\mathrm{Var}(Y)$ for the values of $a \in \mathbb{Z}$ such that these quantities are well-defined.

Hint: Use integration by parts, recursively.

Problem 3: Covariance

Let X be a random variable that is symmetrically distributed (i.e. $X \sim -X$) and square-integrable with Var(X) = 1. Let also $Y = 1_{\{X \geq 0\}}$.

a) Show that for any distribution of the random variable X, $Cov(X,Y) \ge 0$.

- b) Using the inequality $\operatorname{Cov}(X,Y) \leq \sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}$ (whose proof is to come in the sequel of the course), find the least value C>0 such that $\operatorname{Cov}(X,Y) \leq C$ for every distribution of X.
- c) Compute Cov(X, Y) for $X \sim \mathcal{N}(0, 1)$.
- d) Is it possible to find a distribution for X such that Cov(X,Y) = C? If not, is it possible to find a sequence of random variables $(X_n, n \ge 1)$ with varying distributions (all respecting the above constraints) and $Y_n = 1_{\{X_n \ge 0\}}$, such that $Cov(X_n, Y_n) \underset{n \to \infty}{\to} C$?
- e) Is it possible to find a distribution for X such that $\operatorname{Cov}(X,Y)=0$? If not, is it possible to find a sequence of random variables $(X_n,\,n\geq 1)$ with varying distributions (all respecting the above constraints) and $Y_n=1_{\{X_n\geq 0\}}$, such that $\operatorname{Cov}(X_n,Y_n)\underset{n\to\infty}{\to}0$?