Advanced Probability and Applications

EPFL - Fall Semester 2024-2025

Homework 4

Exercise 1.*

a) Let X be a *continuous* and *non-negative* random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that

$$\mathbb{E}(X) = \int_0^{+\infty} \left(1 - F_X(t)\right) \, dt.$$

Extend this formula to further to any continuous random variable X. That is, show that

$$\mathbb{E}(X) = \int_0^{+\infty} (1 - F_X(t)) \, dt - \int_{-\infty}^0 F_X(t) \, dt.$$

b) Use this formula to compute $\mathbb{E}(X)$ for $X \sim \text{Laplace}(0, \lambda^{-1})$ for $\lambda > 0$.

c) Let X be a *discrete* and *non-negative* random variable taking values in \mathbb{N} only. Show that

$$\mathbb{E}(X) = \sum_{k \ge 0} \left(1 - F_X(k)\right).$$

and use this new formula to compute $\mathbb{E}(X)$ when $X \sim \text{Geom}(p)$ for some 0 .

Exercise 2. Let $\lambda > 0$ and $X \sim \mathcal{E}(\lambda)$, and let us define $Y = X^a$, where $a \in \mathbb{R}$.

a) For what values of $a \in \mathbb{R}$ does it hold that $\mathbb{E}(Y) < +\infty$?

b) For what values of $a \in \mathbb{R}$ does it hold that $\mathbb{E}(Y^2) < +\infty$?

c) For what values of $a \in \mathbb{R}$ is Var(Y):

c1) well-defined and finite? c2) well-defined but infinite? c3) ill-defined?

d) Compute $\mathbb{E}(Y)$ and $\operatorname{Var}(Y)$ for the values of $a \in \mathbb{Z}$ such that these quantities are well-defined.

Hint: Use integration by parts, recursively.

Exercice 3. Let X be a random variable that is symmetrically distributed (i.e. $X \sim -X$) and square-integrable with Var(X) = 1. Let also $Y = 1_{\{X>0\}}$.

a) Show that for any distribution of the random variable X, $Cov(X, Y) \ge 0$.

b) Using the inequality $\operatorname{Cov}(X, Y) \leq \sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}$ (whose proof is to come in the sequel of the course), find the least value C > 0 such that $\operatorname{Cov}(X, Y) \leq C$ for every distribution of X.

c) Compute Cov(X, Y) for $X \sim \mathcal{N}(0, 1)$.

d) Is it possible to find a distribution for X such that Cov(X, Y) = C? If not, is it possible to find a sequence of random variables $(X_n, n \ge 1)$ with varying distributions (all respecting the above constraints) and $Y_n = 1_{\{X_n \ge 0\}}$, such that $Cov(X_n, Y_n) \xrightarrow[n \to \infty]{} C$?

e) Is it possible to find a distribution for X such that Cov(X, Y) = 0? If not, is it possible to find a sequence of random variables $(X_n, n \ge 1)$ with varying distributions (all respecting the above constraints) and $Y_n = 1_{\{X_n \ge 0\}}$, such that $\text{Cov}(X_n, Y_n) \xrightarrow{} 0$? **Exercise 4.** a) Let X be a Poisson random variable with parameter $\lambda > 0$. Compute its characteristic function ϕ_X .

b) Show that for a discrete random variable X with values in \mathbb{Z} , the following inversion formula holds:

$$\mathbb{P}(\{X=k\}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itk} \phi_X(t) dt, \quad \forall k \in \mathbb{Z}$$

c) Use the above formula to deduce the distribution of the random variable X with values in \mathbb{Z} whose characteristic function is given by

$$\phi_X(t) = \cos(t), \quad t \in \mathbb{R}$$

d) Without solving part c), how could you be sure that ϕ_X is indeed a characteristic function?