Fubini's Theorem and Radon-Nikodym Theorem

This is a supplementary material intended for those who are interested in two important theorems in measure theory – Fubini's Theorem, which is used to *exchange the order of integrals*, and Radon-Nikodym Theorem, which is often called *change of measure theorem*.

1 Fubini's Theorem

In Exercise 5 of Homework 3, we encounter the *exchange of expectation and integral*. However, it is not in general valid to do so. The natural question to ask is, under what conditions can two integrals exchange?

We first present definitions of product measure and σ -finite measure.

Definition 1.1. A measure space (X, \mathcal{F}, μ) is said to be σ -finite if and only if X could be written as countable union of sets $\{A_n\}_{n>1}$ such that for every $n, \mu(A_n) < \infty$.

Definition 1.2. Let $(X, \mathcal{F}_1, \mu_1)$ and $(Y, \mathcal{F}_2, \mu_2)$ be two measure spaces. The product measure μ defined on the product space $X \times Y$ satisfies that for any measurable subsets $A \subset X$ and $B \subset Y$, it holds $\mu(A \times B) = \mu_1(A)\mu_2(B)$. Moreover, the σ -algebra is the product σ -algebra of \mathcal{F}_1 and \mathcal{F}_2 .

Remark. Such product measure is not unique in general, and the usual technique is to assume all measures to be σ -finite, which means that X and Y could be written as a countable union of sets which have finite measures (with respect to μ_1 and μ_2). Carathéodory's extension theorem then guarantees that such product measure is unique.

Example 1.1. Let $X = Y = \mathbb{R}$ and μ_1, μ_2 be one-dimensional Lebesgue measures. It is obvious that $(\mathbb{R}, \mathcal{B}(\mathbb{R}), dx)$ is σ -finite since $\mathbb{R} = \bigcup_{N>1} [-N, N]$. The product measure μ satisfies, for example,

$$\mu(\{(x,y): 0 \le x \le 2, 1 \le y \le 4\}) = \mu_1([0,2])\mu_2([1,4]) = (2-0)(4-1) = 6$$

In geometry, the measure of a set is identical to its area.

Here comes the statement of Fubini's Theorem.

Theorem 1.1 (Fubini). Suppose X, Y are σ -finite measure spaces, and $X \times Y$ is given the product measure. If f(x, y) is $X \times Y$ measurable and integrable, which is

$$\int_{X\times Y} |f(x,y)| \mathrm{d}(x,y) < \infty,$$

then

$$\int_X \left(\int_Y f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x = \int_Y \left(\int_X f(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y = \int_{X \times Y} f(x,y) \, \mathrm{d}(x,y),$$

which implies that the iterated integral and the double integral are equivalent.

There is also another theorem for non-negative functions, which does not require that f is integrable.

Theorem 1.2 (Tonelli). Suppose X, Y are σ -finite measure spaces, and $X \times Y$ is given the product measure. If $f(x, y) \ge 0$ is $X \times Y$ measurable, then

$$\int_X \left(\int_Y f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x = \int_Y \left(\int_X f(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y = \int_{X \times Y} f(x,y) \, \mathrm{d}(x,y).$$

Remark. The reason that Fubini's Theorem requires f to be integrable is that it adopts the decomposition $f = f_+ - f_-$ where $f_+ = \max(f, 0)$ and $f_- = \max(-f, 0)$ and applies to both parts Tonelli's Theorem. The constraint that f is integrable eliminates the case of $\infty - \infty$, which is ill-defined.

The proof of Fubini and Tonelli is rather technical. You may refer to any classical measure theory books for the proof, or alternatively, see the following page¹.

We would like to use the following example to end this section.

Example 1.2 (*p*-th moment of non-negative functions). Suppose $f \in L^p(\Omega, \mathcal{F}, \mu)$ for $p \ge 1$, where

$$L^{p}(\Omega, \mathcal{F}, \mu) = \left\{ f \text{ measurable} : \int_{\Omega} |f(x)|^{p} \mu(\mathrm{d}x) < \infty \right\}$$

For simplicity, we write it as $f \in L^p$. Such space is called the **Lebesgue space**. It can be proved that L^p is a complete normed space (Banach space) endowed with the norm

$$\|f\|_{L^p} := \left(\int_{\Omega} |f(x)|^p \,\mu(\mathrm{d}x)\right)^{\frac{1}{p}}.$$

This example provides an alternative way to calculate the norm. Indeed,

$$\|f\|_{L^p}^p = \int_{\Omega} |f(x)|^p \,\mu(\mathrm{d}x) = \int_{\Omega} \left(\int_0^{\infty} \mathbf{1}_{\{|f(x)|^p \ge s\}} \,\mathrm{d}s \right) \mu(\mathrm{d}x) = \int_0^{\infty} \left(\int_{\Omega} \mathbf{1}_{\{|f(x)|^p \ge s\}} \,\mu(\mathrm{d}x) \right) \mathrm{d}s,$$

where the last equality is due to Fubini's (or Tonelli's) Theorem. Let $s = t^p$. By the change of variable, we have $ds = pt^{p-1}dt$ and

$$\|f\|_{L^p}^p = \int_0^\infty \left(\int_\Omega \mathbf{1}_{\{|f(x)| \ge t\}} \,\mu(\mathrm{d}x)\right) pt^{p-1} \mathrm{d}t = p \int_0^\infty t^{p-1} \mu(\{x : |f(x)| \ge t\}) \,\mathrm{d}t.$$

For Z being a non-negative random variable, its p-th moment could be calculated in the same way:

$$\mathbb{E}[Z^p] = \mathbb{E}\left[\int_0^\infty \mathbf{1}_{\{Z^p \ge s\}} \mathrm{d}s\right] = p \int_0^\infty t^{p-1} \mathbb{P}(\{Z \ge t\}) \,\mathrm{d}t.$$

When p = 1, it coincides with Exercise 5 of Homework 3.

Exercise. Using a similar argument of the previous example, calculate $\mathbb{E}[\phi(Z)]$ for ϕ strictly increasing and having continuous derivative, where $Z \ge 0$ almost surely.

¹https://patternsofideas.github.io/posts/fubini/

2 Radon-Nikodym Theorem

Before stating the main theorem, we first need the definition of absolute continuity, which coincides with the notion that a random variable X is continuous.

Definition 2.1. Let μ, ν be two measures defined on the same space (X, \mathcal{F}) . We say that μ is absolutely continuous with respect to ν if for any $A \in \mathcal{F}$ such that $\nu(A) = 0$, it holds $\mu(A) = 0$. It is denoted as $\mu \ll \nu$.

Remark. i) The notion defined in the lectures that X is a continuous random variable is equivalent to that the measure induced by X is absolutely continuous with respect to the Lebesgue measure. The measure induced by a random variable X is defined as, for every Borel set B,

$$\mu_X(B) := (X_{\#}\mathbb{P})(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{X \in B\}).$$

It is also called the pushforward measure of \mathbb{P} . The absolute continuity then implies that if |B| = 0, we have $\mu_X(B) = 0$, which coincides with the notion that X is a continuous random variable.

ii) Absolute continuity has different equivalent statements. One version is that $\mu \ll \nu$ if and only if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every measurable set A, if $\mu(A) < \delta$ then $\nu(A) < \varepsilon$.

iii) We say that a function $f : \mathbb{R} \to \mathbb{R}$ is absolutely continuous if for every $\varepsilon > 0$, there exists $\delta > 0$ such that whenever a finite sequence of pairwise disjoint intervals (x_n, y_n) satisfies $\sum_n (y_n - x_n) < \delta$, it holds $\sum_n |f(y_n) - f(x_n)| < \varepsilon$. It is stronger than uniform continuity but much weaker than differentiability.

Now, we state the Radon-Nikodym Theorem used for change of measure.

Theorem 2.1. Let μ, ν be two σ -finite measures defined on the same space (X, \mathcal{F}) . If $\mu \ll \nu$, there exists a unique non-negative $f \in L^1(X, \mathcal{F}, \mu)$ such that for every $A \in \mathcal{F}$,

$$\nu(A) = \int_A f \,\mathrm{d}\mu.$$

Such f is often called the Radon-Nikodym derivative and denoted as $\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$. Moreover, for any non-negative measurable function g,

$$\int_X g \,\mathrm{d}\nu = \int_X g f \,\mathrm{d}\mu.$$

There is an elegant proof by John von Neumann, which adopts the Riesz Representation Theorem of a functional defined on the Hilbert space L^2 . The proof could be found everywhere, for example, in the following page².

Example 2.1 (Continuous random variables). If X is a continuous random variable defined on the space $(\Omega, \mathcal{F}, \mathbb{P})$, then μ_X is absolutely continuous with respect to the Lebesgue measure according to the definition. Therefore, by Radon-Nikodym Theorem, there exists $p_X \in L^1$ such that for every Borel set B,

$$\mu_X(B) = (X_{\#}\mathbb{P})(B) = \int_B p_X(x) \,\mathrm{d}x.$$

 $^{^{2}} https://planetmath.org/proof of radonnikodym theorem$

Moreover, for any measurable function g such that $g \cdot p_X$ is integrable,

$$\mathbb{E}[g(X)] = \int_{\Omega} g \circ X(\omega) \, \mathrm{d}\mathbb{P}(\omega) = \int_{\mathbb{R}} g(x) \, \mathrm{d}(X_{\#}\mathbb{P})(x) = \int_{\mathbb{R}} g(x) p_X(x) \, \mathrm{d}x.$$

This is the formula calculating the expectation of a function of a continuous random variable X. If we take $B = \{x : x \leq t\}$, it follows that $F_X(t) = \mu_X(B)$ and

$$F_X(t) = \int_{-\infty}^t p_X(x) \,\mathrm{d}x.$$

This shows that if X is a continuous random variable, its cumulative distribution function is absolutely continuous. Conversely, if a cumulative distribution function is absolutely continuous, its corresponding random variable is continuous.