Learming Imfinite Classes III

In Mis lectime we inhreduce the motion of VCdim (Vapmik - Chermoventis elimention) and discum the fundamental theozem of learning meong.

Am imprestant result will be proved on the growth rete of hyp clasers when the VCdim is fimite (Sauer's lemma).

Recar from last lime.

$$
C=\left\{\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{m}
\end{array}\right\} \subset \chi
$$

He ret of hyrothesis $h: x \rightarrow y=\{0,1\}$
$\partial e_{c}=$ restriction of functions in te to $c \rightarrow y$

It is a sored idea to vitur H_{c} as the ret of bimary assiguments

$$
\left\{h\left(c_{1}\right) h\left(c_{2}\right) \ldots h\left(c_{m}\right)\right\} \subset\{0,1\}^{m}
$$

a labelings of elments of C.

Example: Threrhold fot $\left\{h_{a}=1_{x} \leq a\right\}=x$

etc... \mathscr{H}_{c} here has 5 fumetions (5 possille labellings with threatold fats among all pessible whichare 16)

Defimition of Shattering.
\mathcal{H} is said to shatter a set $\subset \subset \chi$ if H_{c} contains all posrible labelings a all ponithe fats $C \rightarrow\left\{0\right.$, is i.e if $\left|H_{c}\right|=2^{|C|}$,

Examples.

- Ir te previon cramplechove chviourly $H=$ Theribold fets doer met shatten $C=\left\{c_{1} c_{2} c_{3} c_{4}\right\}$. sinem an heve $1 H_{c} l=5$ and $2^{|c|}=16$.
- $C=\left\{C_{1}\right\}$ Threshold fets shatten C, Indead

so we set all penibl labalings.
- $C=\left\{c_{1}, c_{2}\right\}$ Thecikold fets do rett shath C.

Definition: VC dimension of an hypothesis dan.
$V C \operatorname{dim}(H)=d$ is the largest integer d such that we can find same ret $C \subset \chi$ with $|C|=d$ which is shattered by te.

Remark: $V C \operatorname{dim}(H)=d$ is the integer such her

- $\exists C, 1 C 1=d$, shattered by H so, st H_{c} has all renible labe lings.
AND:
- $\forall C,|C| \geqslant d+1$, are mot shattered by te so, sit H_{c} don mat contain all ponithebelings.

$$
d=\max \left\{|C|: \text { such } \operatorname{mat}\left|e_{c}\right|=2^{|c|}\right\}
$$

Examples of computation of VC dim.
a) Thuerhold facts $X=\mathbb{R} . \mathcal{H}=\left\{\mathbb{1}_{x \leqslant a}=h_{a}\right\}$.
$C=\left\{c_{1}\right\}$ is shattered $\Rightarrow V C \operatorname{dim}(H) \geqslant 1$
$C=\left\{c_{1}, c_{2}\right\}$ is mat shattered $\left.\Rightarrow V c \operatorname{dim}(t)\right)<2$
Thus $v c \operatorname{dim}(f)=1$.
b) Interval fats. $\mathscr{H}=\left\{h_{a, b}=1_{a \leq x \leq b}\right\}$
$C=\left\{c_{1}\right\}$ is shattered

$C=\left\{c_{1} c_{2}\right\}$ is also shattered

$\Rightarrow \quad v c$ dime $\geqslant 2$.
$C=\left\{c_{1} c_{2} c_{3}\right\}$ is mat shattered. Indeed the bbeligy 101 is mat obtained b_{7} rect fats.
\Rightarrow vadimfe <3 Thus $\quad V \subset \operatorname{dim}(X)=2$
C) Exercine:

Let $H_{c b c d}=\left\{h_{c b c d}=1_{a \leq x \leq 3} \cdot 1_{c \leq x \leq d}\right\}$
fa $a<b<c<d$.

Show that Vcdim $(t)=\zeta$.
d) Exencinen.
let $\left.H=\left\{h_{\theta}: \quad h_{\theta}(x)=\frac{1}{2} \sqrt{\sin \theta x}\right], \theta \in \mathbb{R}\right\}$ 7 upper in leger pert.

Note this dan is parametrized by are parcumeten $\mathcal{B} \in \mathbb{R}$. Shew that $V \operatorname{Vdim}(\mu)=+\infty$. In then mach given any m, one can construct C with. $|C|=m$ sot H_{C} contains ans labeling.
e) A xis aligued rectanglen.

$$
X=\mathbb{R}^{2} \quad h_{[a, b] \times[c, d]}(x)= \begin{cases}1 & x \in[a b] \times[c d] \\ 0 & \end{cases}
$$

fot -qual to 1 insid rect.

There sets C are all shettered \Rightarrow Vcdim $\geqslant 4$.
but All aets with $[C]=5$ comnct be stattered

$$
\begin{array}{ll}
c_{1}=\left(c_{1}^{x}, c_{1}^{y}\right) & c_{1}^{x} \min \\
c_{2}=\left(c_{2}^{x}, c_{2}^{y}\right) & c_{2}^{y} \max \\
c_{3}=\left(c_{3}^{x}, c_{3}^{y}\right) & c_{3}^{x} \max \\
c_{4}=\left(c_{4}^{x}, c_{4}^{y}\right) & c_{3}^{y} \min
\end{array}
$$

$$
V c \operatorname{dim}<5
$$

$\mathrm{C}_{5} \rightarrow$ Neancrily inside convex hall

A Rectangl en loxing $c_{1} c_{2} c_{3} c_{4}$ will Oo ea bre c_{5} TI Hence.

The case of finite claver.

Consider a finite clan \mid te $\mid<+\infty$ and look at nets $|c|$ such that $2^{|c|}>|H|$.
obviously there sets cannot be shattered since Hare are mare petentid lebelings thou hyp fats.

Thus rets C with $|C|>\log _{2} \mid$ tel cannot be shattered, This means VCdim(de) $\leqslant \log _{2}$ Hel.

No Free lunch Thun revisited.

Let $V \subset \operatorname{dim}(H)=+\infty$. This means for any inkier 2 m , any set $|C|=2 \mathrm{~m}$ is shattered and $\left|\ell_{c}\right|=2^{2 m}$ i.e C contains all ponible ekelling fats. We can redo the proof of the No free lunch Thru which wasp bared on distr cactrucled out of all then labeling fats. Conclusion was:
for any Alg $A(S)$ receiving $|S| \leqslant m \quad \exists D_{i}$ even $X \times\{0,1\}$ and $f_{i} \in \operatorname{He}_{c}$ s.t
(a) $L_{D_{i}}\left(f_{i}\right)=0$
(b) $\quad \vec{u}\left(L_{D_{i}}(A(S)) \geqslant \frac{1}{8}\right) \geqslant \frac{1}{7}$
and hence te is mat PAC learnable.

Thu: $V C \operatorname{dim}(f)=+\infty \Rightarrow$ de is mot PAC bermable \mathscr{H} is PAclearmahle $\Rightarrow \operatorname{VCdim}(\mathrm{P})<+\infty$.

Fundamental Theorem of PAC learning.

Let $h \rightarrow h: \chi \rightarrow\{0,1\}$.
lat Con fat l sit $0 \leqslant l(h, z) \leqslant 1$.
The following are all equivalent:

1. He has the uniform cav preppenty
2. H is agnostic PAC learnable with the ERM rule
3. He is gruortic RAC learnable.
4. He is PAC learnable.
5. He is PAC learnable with the ERM rale
6. He is finite vcdimenrion.

Pref: $1 \Rightarrow 2$ (previous claver)

$$
2 \Rightarrow 3,3 \Rightarrow 4,2 \Rightarrow 5 \quad \text { (hivial!) }
$$

$4 \Rightarrow 6$ (asofree bunch the just discurad).
$6 \Rightarrow 1$ Remains bo be shown.

Now we discuss the proof $f(6) \Rightarrow(1)$.

Maim idea first:

Recap from lest lime $\tau_{\mu}(m)=\max \left(X_{c} \mid\right.$

$$
|c|=m
$$

"gre with rate"
and we proved
Thu: $\forall D$ we hove for $\forall \delta>0$

$$
\overline{\mathbb{P}}\{\sup _{h \in D^{\mu}}|\underbrace{L_{D}(h)}_{\text {true Risk }}-\underbrace{L_{S}(h)}_{\substack{\text { empirical } \\ \text { risk }}}| \leqslant \frac{4+\sqrt{\log \tilde{\rho}_{d}(m)}}{\delta \sqrt{2 m}}\} \geqslant 1-\delta
$$

This than implies enif canc papery hold h of we have $\frac{4+\sqrt{\log \tau_{d e}(m)}}{\delta \sqrt{2 \mathrm{~m}}}<\in$ and thus te is gnoihi $P A C$ This can be cchicred for $m \geqslant m_{\mathcal{L}}^{U C}(f, \delta)=C \frac{d+b_{\delta} 1 / \delta}{e^{2}}$ as bong as $\tau_{\partial e}(\mathrm{~m})=$ poly (m)

So what remains to be undustood is the beharia of $\tau_{d e}(M)$ and metchly when is it poly (m)?

- Note that if $m \leq d=\operatorname{vodim}(t e)$ then $\exists C$ with $|C|=m$ shatuad by te (by definitia of $v c$)

$$
\Rightarrow\left|X_{c}\right|=2^{m} \Rightarrow \quad \tau_{x^{(m)}}=2^{m} \text { fa m } \leq d .
$$

- The real question is what happens for $m \geqslant d+1$?

Lemma: Samer-Shelah-Perer

Let $V \subset \operatorname{diru}(P)=d<+\infty$. Then for $m \geqslant d+1$ we have

$$
\tau_{\mathcal{L}}(m) \leqslant \sum_{i=0}^{d}\binom{m}{i} \leqslant\left(\frac{e_{m}}{d}\right)^{d}
$$

Proof of Lemme.

- The imegn $\sum_{i=0}^{d}\binom{m}{i} \leqslant\left(\frac{e_{m}}{d}\right)^{d}$ for $m \geqslant d+1$ is "calculus" and is left as exencise on (Fer Appendix of UOL).
- We shew here $\tau_{r e}(m) \leqslant \sum_{i=1}^{d}\binom{m}{i} f o r m \geqslant d+c$.

First remark: it suffices to prove
$\left|H_{c}\right| \leqslant \mid\{B \subset C$ such that te shatas $B\} \mid$
Number of subsets of C Not are. shattered by te.

Indeed:

B-subsets have fire $|B| \leqslant d$ sine they are shattered \# of B-sibuts of size i is $\binom{m}{i}$.
(Nook for $i=0$ we take $B=\phi$ which is shattered $b y$ convenker),

We will prove the inegn by induction.
$\underline{m=1:} C=\{c\} \quad$ possibility for X_{c} are

$$
H_{c}=\{h(c)=0\} \quad H_{c}=\{h(c)=1\}
$$

and $H_{c}=\left\{h_{1}(c)=0, h_{2}(c)=1\right\}$.

- If $H_{c}=\{h(c)=0\} a X_{c}=\{h(c)=1\}$

$$
\left|X_{c}\right|=1 \text { so } \tau_{\not x}(m=1)=1
$$

subsets $B \subset C$ that are shattered is only \varnothing. (since $C=\{c\}$ is mot shattered here).
$\mid\{B \subset C, B$ is shattered $b y \operatorname{Le}\} \mid=1$.

$$
1 \leq 1
$$

- If $x_{c}=\left\{h_{1}(c)=0, h_{2}(c)=1 \int\right.$ hen $\left|H_{c}\right|=2$ so $\quad \tau_{\alpha}(r u=2)=2$.
subset, $B \subset C$ that ane shattered are $\varnothing, C=\{C\}$

$$
\mid\{B \subset C \text {, Bis shattered } b \text {, He }\} \mid=2
$$

$2 \leqslant 2$
Thus base case $\mu=1$ works.
induction hyvethetis: we assume the imepuelity holds fer all rets C^{\prime} of size $1 \leqslant k \leqslant m-1$

We rust prove it then holds for C of size m.
add $\quad C^{\prime}=\left\{\begin{array}{llll}c_{2} & \ldots & c_{m}\end{array}\right\} \quad \begin{array}{llll}c_{2} & c_{3} & & c_{m} \\ c_{m} & \ldots & x^{\prime}\end{array}$
add $\quad($ $\underset{c_{1}}{\operatorname{a}}{ }_{c}=\left\{c_{1} ; c_{2} \ldots c_{m}\right\} \quad x_{1} c_{2} \times \ldots x^{c_{m}}$

Posribilitian fa He:

This set of Callings is called F_{0}.
\(\left.\begin{array}{llll}c_{1} \& c_{2} \& c_{m} \\
x \& x^{2} \& \cdots \& x \\

0 \& y_{2} \& \cdots \& y_{m}\end{array}\right\}\)\begin{tabular}{l}
Labeling of c^{\prime} \\

extend bo both resih.lities
fun c_{1}

\end{tabular}

This set of ${ }^{\text {billings is called } F_{1} \text {. }}$
we have chviously

$$
\left|x_{c}\right|=\left|\Psi_{c}\right|+\left|\varphi_{1}\right|
$$

Inequality on |Y|:

$$
\begin{aligned}
\left|Y_{0}\right| & =\left|X_{c^{\prime}}\right| \\
& \leqslant \mid\left\{B^{\prime} \subset C^{\prime} \text { s.t } B^{\prime} \text { is shattenad by } x \text { \} }\right\} \mid
\end{aligned}
$$

$C_{\text {by induction haretheris. }}$

$$
\begin{aligned}
& =\mid\{B \subset C \text { s.t } c, \notin B \text { and } B \text { is shettued } b, t\}\} \mid \\
& \text { mrivial }
\end{aligned}
$$

in summery

$$
\left|\tau_{0}\right| \leqslant \mid\left\{B \subset C \text { s.t } C_{1} \notin B \text { and } B \text { is shattend byte\} }| |\right.
$$

Inequality on T_{1} :

Let $\tilde{H} \subset \mathscr{H}$ where H^{\prime} contains pains of functions $\bar{h}, \overline{\bar{h}}$ which are equal on C^{\prime} and opposite an C_{1}.
$\tilde{H}=\{\tilde{h} \in \mathscr{H}$ such that $\exists \bar{h} \in \mathscr{A}$ with

$$
\left|Y_{1}\right|=\left|\tilde{H}_{c},\right|
$$

$\leqslant \quad \mid\left\{B^{\prime} \subset C^{\prime}\right.$ such that B^{\prime} is shattered by $\left.\tilde{\mathscr{E}}\right\} \mid$
induction

$$
=\mid\left\{B^{\prime} \subset c^{\prime} \text { s.t } B^{\prime} \cup\left\{c_{1}\right\} \text { is shattered } b y \tilde{\mathscr{E}}\right\} \mid
$$

Since \mathcal{L} ' contains pains of h_{71} which differ on C_{1}.
$=\int\{B \subset C$ such het C, B and B is trivial shattered by $\tilde{e}\}$
$\leqslant \mid\left\{B \subset C\right.$ s.t $C_{1} \in B$ and B is
 shattend by te $\}$
becaune $\tilde{H} \subset$ te so more sets are shettend b te since we have more fots in te.
im summery ne have chtained

$$
\begin{aligned}
& \left|Y_{0}\right| \leqslant \mid\left\{B \subset C \text { s.t } c_{1} \notin B \& B \text { slattand } \beta_{1}+e^{2}\right\} \mid \\
& \left|\varphi_{1}\right| \leqslant \mid\left\{B \subset C \text { sit } C_{1} \in B \& B \text { shaterad iyte }\right\} \mid \\
& \Rightarrow\left|\left|x_{c}\right|=\left|\varphi_{0}\right|+\left|\varphi_{1}\right|\right. \\
& \leqslant \mid\{B C C \text { s-t } 3 \text { shattined by te }\} \mid
\end{aligned}
$$

