
Setting-up Visual Studio Code default configuration and
brief introduction to the integrated debugger

Mingfei Yu for CS-119(c) and COM-112(a)

December 5, 2023

1 Introduction
So far, we are using geany as the editor to write C++ programs in this course, as it provides us with
a convenient way to set up the compiling commands. However, with more and more difficult coding
tasks assigned to you, you may already find it time-consuming and annoying to detect the bugs in your
program: through inefficiently printing out immediate results and comparing them with your expected
value, debugging can cost you more time than developing a program! In other words, congratulations!
You have become a more advanced programmer and therefore need a more powerful helper to face greater
challenges! We propose to instead use Visual Studio Code(VSC), a code editor developed by Microsoft,
as it supports easy-to-use debuggers, as well as a variety of extensions that can help you write code more
efficiently.

VSC is already installed in the provided Virtual Machine (VM), and considering its popularity, many
of you may have been working with it. In this tutorial, we introduce how to get your VSC configured
once and forever on the course VM ! For extensions, our flow here only covers the installation of two for
CS-119(c) and two others for COM-112(a), which we believe are helpful:

1) semester1 CS-119(c): C/C++ for debugging and formatting, and Code Runner for a convenient
way to compile and execute your code.

2) semester2 COM-112(a): Makefiles Tools for launching the compilation of the project code, and
Live Share for a convenient way to edit and compile your code simultaneously with your project partner.

2 Setting-up VSCode default configuration on the VM
If you use the course VM, you only need to do the following once. Otherwise, please refer to Section 2.2.

2.1 Configuration through running script
Step 1 From Moodle course page, download the provided archive file containing the script vs_setup.sh

that you extract from that archive file, for example in the download folder.

Step 2 Open the terminal application via, for example, the “show application” button at the bottom of the
sidebar. Assuming that the extracted file vs_setup.sh is in the folder: “~/Download/”, then enter
the following command in the terminal to run the script:

bash ~/Download/vs_setup.sh

If there is an error message printed out, double check the name of your download folder and make
sure that the file vs_setup.sh is present in that folder.

1



Step 3 Close the terminal window and then launch VSC.
For the pop-up “Get Started” window, either do the customization as you wish or directly close it.
From the toolbar on the upside of the GUI, select: “File - Open Folder - Programmation”. In this
way, Programmation would be regarded as the working space.
The script has automatically generated a .vscode file folder, as well as 3 configuration files(json
files) under “Programmation/.vscode” for C++ compiler, debugger and VSC extensions. These
configurations would be automatically loaded and enabled by VSC.

Step 4 To create a new project, we suggest you create a new file folder under “Programmation”.

For example, to create a project Helloworld, which consists of only one cc file helloworld.cc, you
can: click the “New Folder” button to create a folder named Helloworld under Programmation,
select the created Helloworld folder and click the “New File” button to create helloworld.cc. Then,
when compiling and debugging helloworld.cc, the mentioned configurations would take effect
automatically, which means you can easily start playing with the compiler and debugger!

Step 5 Now you have get VSC ready! Now continue to Section 3 for some handy features of VSC.

2.2 Configuration by hands if you are NOT using the provided VM
This section is for those who are not using the course VM. Please note that we cannot support you more
than the content of this section as we focus on offering support for the course VM. Make sure that g++
and gdb(for Windows) / lldb(for MacOS) are already available on your laptop. For Windows, g++ and
gdb are included in MinGW; For MacOS, g++ and lldb come with Apple’s XCode tools package. If you
have already got the configuration done following Section 2.1, please skip to Section 3.

Step 1 Based on the operating system you are using, download the corresponding versions of configu-
ration files from the Moodle course page. There would be 3 JSON files in total: launch.json,
tasks.json and settings.json.

Step 2 Launch VSC, and open the folder you would like to specify as the working place. Assume you are
putting all your codes in a folder named Programmation, from the tool bar on the upside of the
GUI, select: “File - Open Folder - Programmation”.

Step 3 Create a file folder under Programmation and name it as .vscode(refer to the figure in Section 2.1
Step 4 for where the “New Folder” button is). Move the 3 configuration files downloaded in Step
1 to .vscode.

2



Step 4 For your projects, put them under Programmation, just next to .vscode. No worry, the configura-
tions in .vscode would automatically take effect. Better NOT to put your projects under .vscode,
which is not necessary and may make things a mess.

Step 5 Install extensions by clicking the “extensions” button: As shown in the figure, C/C++ and Code
Runner are the two extensions that we recommend. But you can always further install more ex-
tensions as you wish.

Step 6 Create a file folder under Programmation and name it as Test, then put the provided test.cc under
Test.

3 Handy Features
VSC has many powerful features integrated, the usage of which does not require installing any extensions.

3.1 Input and output redirection when executing from a terminal
You can open a VM terminal in VSC as follows:

When executing an executable file via a terminal, its input and output can be redirected using the “<”
and “>” operators, respectively. More specifically,

• Command “./[executable] < [filename.txt]” means the content of filename.txt would be the input of
executable;

• Command “./[executable] > [filename.txt]” means the output of executable would be stored in file-
name.txt.

Note for windows users: if you are programming locally on a Windows-powered machine instead of
using the VM, note that the “<” operator is not defined in PowerShell on Windows but it works fine in the
cmd terminal.

3



3.2 Comparing files
Comparing files using VSC is convenient. Exploiting this feature, in your project, you can easily check
the correctness of your code by comparing the output file with the file containing the expected answer.

Among all the files in the EXPLORE panel, two files can be compared by (1) selecting the two files
while holding “ctrl”, then (2) right-clicking and selecting “Compare Selected”. As an example, Here is the
comparison result of two waveforms. The lines that are different in the two files are highlighted. Different
characters are further marked: in this example, the two files are different in the number of asterisks in
lines 22 and 23; all other lines are the same.

4 Semester1 CS-119(c): code formating, running and debugging
As you may have already noticed, in the Programmation folder, there is a Test project created, which
consists of one file test.cc. In this section, we show some basic but handy usages of the installed extensions,
while playing with this simple example.

4



1. As has been highly emphasized during the lectures, it is important to raise the habit of keeping your
codes neat. Now, even if your code is in a mess, VSC can help!
To play with this function, you can first randomly disorganize the code by, for example, inserting some
spaces at the beginning of different lines. Then, type “ctrl+shift+i”, or right-click and select “Format
Document”. You will find the code automatically organized! But, keep in mind, don’t rely too much
on this handy function, and always keep your code in the format requested by the course conventions)

2. To quickly compile your code, use the shortcut “ctrl+shift+b”. It is recommended to compile your
code frequently, especially when you are developing a large-scale project: detecting bugs as early as
possible can save you a lot of time.
Also, since we have installed Code Runner, when you are quite confident with your code that there are
neither syntax error nor semantic errors, you can give it a quick run via right-clicking and selecting
“Run Code”, or using “alt+ctrl+n” to see the execution result.

3. Time to learn how to debug now! First, find the “Run and Debug” button on the left-hand side of the
GUI and click it. Similarly, click the same button when you want to exit the debugging mode.

Then, click the green triangle as shown below, or use the shortcut “F5”, to start debugging.

After waiting for several seconds, we would find the output of the program in the internal terminal:

(1) When developing programs, it is usual that the output is not consistent with our expectation(semantic
error, but not syntax error). In those situations, an efficient way to debug is to run the code line
by line and trace the value of some variables. To do this, set a breakpoint by clicking the space
before the line number where you would like the program to stop. As an example, as the red point
indicates, we set a breakpoint at line 10.

(2) With breakpoints set, if we start debugging, something different would happen: this time, nothing
is printed out in the terminal, and the execution stops at line 10. Notice that the line highlighted in
yellow(line 11) denotes the next line to be executed.

5



(3) To execute the program line by line, you can make use of the toolbar, which appears only if we are
debugging.
Among these buttons: “Continue” would run the code until the next breakpoint; Both “Step Over”
and “Step Into” allow us to execute the program line by line, but when encountering a line that
calls a function, “Step Over” would regard the execution of the function body as a whole, while
“Step Into” would execute the function body also in a line by line manner.
In our example, using “Step Over”, the line to be executed after line 11 would be line 12 because
the execution of the 𝑚𝑦_𝑠𝑤𝑎𝑝 function(line 17 to line 21) is regarded as one step(line 11); Instead,
if we use “Step Into”, line 17 would be the next line where the program stops.

(4) Find the temporary value of the variables in the window on the left-hand side of the GUI. If the
variables that you are concerned about are not there, you can manually add them by clicking the
“+” button in the “WATCH” window.
Also, by hovering the cursor over the variable that you are interested in, its temporary value would
be available as well.

While this brief tutorial only offers a quick view to debug C++ code, we recommend you also check the
tutorial provided by Microsoft: https://learn.microsoft.com/en-us/visualstudio/debugger/
getting-started-with-the-debugger-cpp.
Notice that it is totally fine if you find yourself not able to completely figure out everything in their
example, as some points there can be beyond your current knowledge. The target here is just to master
the most basic usages of a debugger, to develop your program more efficiently:)

5 Semester2 COM-112(a): make, Makefile, debugging and Live Share
5.1 Use of Makefiles
In this semester, since we are learning the concept of modular programming, as well as the usage of
Makefile, it is necessary to think about how to make use of Makefiles when developing projects using
VSC.

6

https://learn.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger-cpp
https://learn.microsoft.com/en-us/visualstudio/debugger/getting-started-with-the-debugger-cpp


The first thing that may come into your mind, which is also what most of you are doing, is that entering
the make command into the terminal in VSC. This is definitely a convenient and straightforward solution,
but the goal here is to handle Makefiles using the GUI of VSC. Our suggestion is to use the following
extension, Makefile Tools. If you are already used to making use of the terminal to compile your program,
it is not compulsory to follow the configuration below.

After installation, the icon of this extension can be found in the sidebar:

There are three buttons on the top side of the window, respectively corresponding to the build, debug
and run commands, which are quite similar to the “Run and Debug” function of VSC that is already
introduced in Section 4. Additionally, there are three different items of configurations: Configuration,
Build target and Launch target, by customizing which we can instruct VSC to make use of the Makefile
in the way we want.

Hereafter, we focus on figuring out the duties/usages of these three configuration items. The ex-
ample here is the source code of the project prog, which is provided in exercise 0.

1. Configuration is for passing arguments to the make utility, i.e., setting the configuration for
build. It refers to the make command configurations defined in .vscode/settings.json.
When there is no such configuration made in the JSON file, when clicking the pencil button in
this item, “Default” would be the only available option. As an example, we define the following
configurations in .vscode/settings.json:
One more make command configuration, Print make version, now becomes available, which adds
the “–version” argument to the make utility. With this make command configuration, every time
we build our program using Makefile Tools, the version of make would be printed out. In my case,
the following information is displayed in the terminal:
“Default” is possibly the most common make command configuration, but you can explore different
arguments for your own needs. A list of valid arguments can be found in https://www.gnu.org/
software/make/manual/html_node/Options-Summary.html.

7

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html
https://www.gnu.org/software/make/manual/html_node/Options-Summary.html


2. Build target is a concept that we have learned about in exercise 0 at the beginning of this semester.
In our example, there are three targets defined in the Makefile: prog, depend and clean, which are
the three optional configurations here. In this example, to generate the executable file, we select
prog as the build target.

3. Launch target requires us to point out which executable file would be run if we click the debug or
run button. In our example, prog is the only option for this configuration.

In conclusion, the Makefile Tools extension enables us to make use of Makefiles using the GUI of
VSC, eliminating the necessity of explicitly entering the make command into terminals.

5.2 Call the Debugger using Makefile Tools
In this section, we introduce how to call the debugger in VSC using the Makefile Tools extension. To
provide an easy-to-follow tutorial, we take the project type_parametre_form in Week4’s exercise as an
example, the source code of which can be found at: https://moodle.epfl.ch/mod/resource/view.
php?id=1016209.

1. First of all, make sure that the “-g” flag is included in the “CXXFLAGS” list of your Makefile. In
our example, we configure the “CXXFLAGS” list as: The “-g” flag is important if we want to use

the debugger because it tells the compiler to generate those intermediate files that gdb requires.

2. If you have already compiled your program before, do not forget make clean before proceeding to
the following steps. To do a make clean, you can either (a) directly execute the make clean command
in a terminal, or (b) click the three items highlighted using red squares in the figure below in order:

8

https://moodle.epfl.ch/mod/resource/view.php?id=1016209
https://moodle.epfl.ch/mod/resource/view.php?id=1016209


3. If you do make clean in the (b) manner in the previous step, do not forget to reset the build target
back to all. Now, if you press the Debug the selected binary target button, your program will be
built first, and the debugger will be activated sequentially — then you can play with the same tricks
introduced in Section 4 to debug your program using the debugger!

4. If you need to pass an argument/arguments to your executable file: configure the settings.json under
the .vscode folder by writing down the argument(s) you want to parse in the “binaryArgs” entry of
“makefile.launchConfigurations”:

In our example, since our executable file test takes in the name of a file as the argument, I fulfil the
square brackets with “form_data_1.text”. If you would like to parse more than one argument, put
them all between the square brackets and separate them using commas.

5. Then, if we click the pencil icon next to Launch target, we will find one more option for the launch
target, which corresponds to our configuration in the previous step. Select the launch target that you
would like to debug and then press the debug button as before. An example, if we put a breaking

point at line 26, we witness that we have successfully invoked the debugger, and the execution of
the program is stopped exactly at line 26, together with the familiar debugging tools that we have
seen before in Section 4:

5.3 Collaborate with your project partner using Live Share
As the semester progressed, it is glad to notice that you have become more experienced programmers.
However, since the projects you are developing are becoming more and more complicated, how to col-
laborate with your project partner more efficiently is a natural question.

9



While there might be numerous solutions, we introduce one of them here: Visual Studio Live Share.
Again, please notice that we are just offering an option and it is not compulsory for you to follow this
suggestion.

(1) To get started, search and download the Live Share extension in VSC.

After installing the extension, a new icon will appear in your sidebar:

As can be learned from the figure, using Live Share, we can either: generate a link to invite your
project partner to join your session; or, join someone’s session using an invitation link from him/her.

10



(2) To create a session for collaboration, let us click the “Share” button shown in the previous figure. You
have the option to make this session ready-only, if you would like to prevent your invitee from editing
the code for some reason. You can also configure the session to be read-only later. For a read-only
guest, although he/she cannot edit the codes, he/she is still able to debug the program.
VSC may ask you for your Microsoft or Github account, if you have not yet signed in. Then, a message
would pop up, notifying you that the invitation link to your session is ready:

As shown in the message, the invitation link is already in the clipboard of your computer and you can
easily distribute it to your project partner by email, social software, etc.
Hereafter, let us go through a typical usage of Live Share. To give an example, I am regarding my
laptop as the host, and my VM as the guest who has received the invitation link from the host.

(3) The simplest way for you (as a guest) to join the shared session might be by opening the link using a
web browser. A request would pop up, asking for your permission to open the link. After confirming
the request, you can choose to work with either the web-based or desktop-based version of VSC. If
the Live Share extension is not yet installed, the installation will start automatically.
As a guest, it is not required to log in to your GitHub or Microsoft account and you can contribute
anonymously:

For clarity, in this example, we join the session as anonymous and specify the name as “COM112”.
At the same time, on the host’s side, a message would pop up, asking the host to approve the join
request from COM112, as well as specify the authority of the guest (read-only or read-write).

If the host gives the green light to the join request, we reach the stage where there are two parties (the
host and the guest, COM112) in this shared session, ready to collaborate.

(4) Now, as long as this session is not terminated by the host, the guest can access the program as if it is
locally available. Still use the source code of the project prog as an example:

11



Each party in the session can learn which lines are others working on in real-time: in our example,
the purple cursor and name label tell the host that COM122 is working on this annee_est_bissextile
function.
Similarly, any configuration for debugging, such as the insertion of breakpoints and adding variables
to the watch window introduced in Section 4, would be simultaneously visible to all the parties in
this shared session.
Besides, by clicking the “Share terminal...” option, the host can create a shared terminal:

Using this shared terminal, the team can jointly evaluate the program by giving it various inputs.
Additionally, the “Session chat” option in the menu provides the team with a convenient chat room to
exchange ideas efficiently.

(5) To terminate the shared session, the host just has to click the following button:

Then, all the changes made to the program are still available to the host, but the guests cannot get
access to the codes any longer.

Hope this brief introduction to the Live Share extension can help you collaborate with your teammate
on the project more efficiently. For those interested in learning more about this extension, please refer to
https://code.visualstudio.com/learn/collaboration/live-share.

12

https://code.visualstudio.com/learn/collaboration/live-share

	Introduction
	Setting-up VSCode default configuration on the VM
	Configuration through running script
	Configuration by hands if you are NOT using the provided VM

	Handy Features
	Input and output redirection when executing from a terminal
	Comparing files

	Semester1 CS-119(c): code formating, running and debugging
	Semester2 COM-112(a): make, Makefile, debugging and Live Share
	Use of Makefiles
	Call the Debugger using Makefile Tools
	Collaborate with your project partner using Live Share


