
Solutions to Graded Homework 1 (HW3)
CS-526 Learning Theory

Problem 1. Exercise 5 of Chapter 3
Consider some h ∈ H s.t. L(Dm,f)(h) > ϵ. Then it follows by definition of L(Dm,f) (the true
loss) that ∑m

i=1 PX∼Di
[h(X) = f(X)]

m
< 1− ϵ.

Then we bound the probability that LS(h) = 0 as follows:

PS∼
∏m

i=1 Di
[LS(h) = 0] =

m∏
i=1

PX∼Di
[h(X) = f(X)]

=

( m∏
i=1

PX∼Di
[h(X) = f(X)]

)1/m
m

≤
(∑m

i=1 PX∼Di
[h(X) = f(X)]

m

)m

≤ (1− ϵ)m

≤ e−ϵm.

The first inequality above is the geometric-arithmetic mean inequality. It remains to apply
the union bound to conclude that the probability that there exists h ∈ H with true loss
greater that ϵ and zero loss for the observed samples is upper bounded by |H|e−ϵm.

Problem 2. Exercise 2 of Chapter 5
Denote by Hd the class of axis-aligned rectangles in Rd. Since H2 ⊆ H5, the latter class is
more representative and in the presence of sufficiently many samples is likely to have smaller
true loss. However, the growth rate (and the VC dimension) of the former is smaller, which
gives us better bounds on the approximation error, which makes it more preferable in case
of small number of samples.

Problem 3. Exercise 3 of Chapter 5 We modify the proof of NFL theorem in the book.
Consider subset C ⊂ X of size km. There are T = 2km functions from C to {0, 1}, f1, . . . , fT .
Let Di’s be probability distribution defined as in the proof of NFL.

Fix a training set Sj = {x1, . . . , xm} and let v1, . . . , vp be the examples in C that do not
appear in Sj. Clearly, we have p ≥ (k−1)m. Therefore, for every h : C → {0, 1} and i ∈ [T ],
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we have (Eq. 5.5 in the book)

LDi
(h) =

1

km

∑
x∈C

1[h(x) ̸=fi(x)]

≥ 1

km

p∑
r=1

1[h(vr )̸=fi(vr)]

≥ k − 1

kp

p∑
r=1

1[h(vr) ̸=fi(vr)]

(1)

Then, the right-hand side of Eq. 5.6 becomes

k − 1

k
min
r∈[p]

1

T

T∑
i=1

1[A(Si
j)(vr) ̸=fi(vr)]

From which we can conclude (similar to the proof of NFL) that

E
[
LD

(
A(S)

)]
≥ k − 1

2k

Problem 4. Exercise 2 of Chapter 6
1. We show that VCdim(H=k) = min(k, |X | − k).

Consider a set of k + 1 elements. The all-one labeling cannot be obtained, hence
VCdim(H) ≤ k. Analogously, for a set of |X | − k + 1 elements, the all-zero labeling cannot
be obtained so VCdim(H=k) ≤ min(k, |X | − k).

Take a set C of size m = min(k, |X | − k) and a labeling (y1, . . . , ym) with s ones,
0 ≤ s ≤ m. We can pick a hypothesis h ∈ H=k such that h(xi) = yi for all xi ∈ C
and it has k − s ones on the set X \ C (this is possible because |X \ C| ≥ k ≥ k − s).
Therefore, C is shattered and VCdim(H=k) ≥ min(k, |X | − k).

2. We show that VCdim(Hat−most−k) = min(2k + 1, |X |).
Consider a set of 2k+ 2 elements. It is clear that any labeling with k+ 1 ones and k+ 1

zeros cannot be obtained, so VCdim(Hat−most−k) ≤ 2k + 1. Note that it may happen that
2k + 1 > |X |, so the bound should be VCdim(Hat−most−k) ≤ min(2k + 1, |X |).

Take a set of min(2k + 1, |X |) elements. Any labeling on this set has either ≤ k zeros or
≤ k ones, so it is shattered by Hat−most−k. Thus, VCdim(Hat−most−k) ≥ min(2k + 1, |X |).

Problem 5. Exercise 8 of Chapter 6
Let’s first prove the lemma. Let m ≥ 1 and 0.x1x2 . . . the binary expansion of x ∈ (0, 1).
Assume that there exists k ≥ m such that xk = 1. We have:

sin(2mπx) = sin(2mπ · (0.x1x2 . . . )) = sin(2π · (x1x2 . . . xm−1. xmxm+1 . . . ))

= sin(2π · (0.xmxm+1 . . . )) .

If xm = 0 then ∃k > m s.t. xk = 1, i.e., the number 0.0xm+1 . . . is nonzero. This means that
2π · (0.0xm+1 . . . ) ∈ (0, π) where sin(x) is positive, which gives the label 1. If xm = 1 then
2π · (0.1xm+1 . . . ) ∈ [π, 2π) where sin(x) is non positive, which gives the label 0. This ends
the proof of the lemma.
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To prove that H has infinite VC-dimension, we need to show that for any n there is a set
of n points in R on which we can obtain all 2n possible labelings. Let (x1, . . . , xn) ∈ (0, 1)n

such that the first 2n bits of their binary expansions give all possible labelings and their
(2n)th bit is always one (i.e., the (2n)th bits form the all-one labeling).

Example for n = 3:

x1 0. 0 1 0 1 0 1 0 1
x2 0. 0 0 1 1 0 0 1 1
x3 0. 0 0 0 0 1 1 1 1

Using the lemma, invoking the function ⌈sin(2iπx)⌉ on the set {x1, . . . , xn} for 1 ≤ i ≤ 2n

allows to obtain all possible labelings. Hence, H shatters the set {x1, . . . , xn}.

Problem 6. Stable learning

1. Fix the labeling function f and a distribution D on X . Call a hypothesis h ∈ H “bad”
if Px∼D

[
h(x) ̸= f(x)

]
> ϵ. Let Eh be the event that m independent samples in S

drawn from D are all consistent with h, i.e. h(xi) = f(xi), for 1 ≤ i ≤ m. Then, if h
is bad, P [Eh] ≤ (1− ϵ)m ≤ e−ϵm.

Consider the event
E =

⋃
bad h∈H

Eh

Then, by union bound, we have:

P [E] ≤
∑

bad h∈H

P [Eh] ≤ |H|e−ϵm

If m ≥ 1
ϵ

(
log |H|+ log 1

δ

)
, then this probability is upper bounded by δ.

Thus, wheneverm is larger than the bound, the probability that a stable learner returns
a bad hypothesis hS ∈ E is at most δ. Which means that the event P (hS(x) ̸= f(x)) >
ϵ has probability at most δ. Thus the event P (hS(x) ̸= f(x)) > ϵ has probability at
least 1− δ.

2. (a) The output is h = z1∧ z̄2∧ z̄3∧z4. Stability is checked by plugging all four xi ∈ S
and checking that h(xi) = ϕ∗(xi).

(b) We have that |H| = 3n, because any variable can appear as zi or z̄i, or do not
appear in a conjunction. Then using part 1, we should have

m ≥ 1

ϵ
(log |H|+ log

1

δ
) =

1

ϵ
(n log 3 + log

1

δ
)
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