Problems from Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz and Shai Ben-David:

- 1. Exercise 5 of Chapter 3.
- 2. Exercise 2 of Chapter 5. Note that here we expect just a qualitative answer, without any computations.
- 3. Exercise 3 of Chapter 5.
- 4. Exercise 2 of Chapter 6.
- 5. Exercise 8 of Chapter 6.

Problem 6. Stable Learning.

Let \mathcal{X} be a domain set and \mathcal{Y} be a set of labels. Let \mathcal{F} be a set of possible labelling functions, $\mathcal{F} \subset \{f | f : \mathcal{X} \to \mathcal{Y}\}.$

Definition: We say that A is a stable learner for \mathcal{F} using the hypothesis class \mathcal{H} , if for any labeling function $f \in \mathcal{F}$ and for all $m \geq 1$, when given as input the set of samples $S = \{(x_1, f(x_1)), \dots, (x_m, f(x_m))\}$ where $x_i \in \mathcal{X}$, A outputs $h_S \in \mathcal{H}$ such that $h_S(x_i) = f(x_i)$ for $1 \leq i \leq m$.

Remark: Question 1 is about the proof of a statement and question 2 is an application. You can answer question 2 even if you do not prove the statement in question 1.

1. Let \mathcal{F} be a labelling class and \mathcal{H} a finite hypothesis class which are not necessarily equal. We suppose there exists a stable learner A for \mathcal{F} using \mathcal{H} . Prove the following statement:

For all $f \in \mathcal{F}$ and all distributions \mathcal{D} over \mathcal{X} and all $\epsilon, \delta \in (0, 1)$, if A is given a set of samples $S = \{(x_i, f(x_i))\}_{i=1}^m$ with $x_i \sim \mathcal{D}$ and size m such that

$$m \ge \frac{1}{\epsilon} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right),$$

then with probability at least $1 - \delta$ the learner A outputs a hypothesis $h_S \in \mathcal{H}$ that satisfies

$$P_{x \sim \mathcal{D}} \big[h_S(x) \neq f(x) \big] \le \epsilon$$

<u>Hint</u>: Fix the labeling function. Then, define a notion of "bad" hypotheses, and use union bound.

Now, we consider the problem of learning conjunctions. Let $\mathcal{X} = \{0, 1\}^n$. Let $\mathcal{F} = \text{CONJUNCTIONS}_n$ denote the class of conjunctions over the *n* boolean variables z_1, \ldots, z_n . A *literal* is either a boolean variable z_i or its negation \overline{z}_i . A conjunction is simply an 'and' (\wedge) of literals. An example conjunction φ with n = 10 is

$$\varphi(z_1,\ldots,z_{10})=z_1\wedge\bar{z}_3\wedge\bar{z}_8\wedge z_9$$

We want to learn a target conjunction $\phi^* \in \text{CONJUNCTIONS}_n$ from a sampling set $S = \{(x_i, \phi^*(x_i))\}_{i=1}^m$, and the hypothesis class is $\mathcal{H} = \text{CONJUNCTIONS}_n$. So here each sample x_i is a binary vector $(x_{i,1}, \dots, x_{i,10})$ assigned to (z_1, \dots, z_{10}) . The corresponding label $\phi^*(x_i)$ equals 0 or 1.

- 2. Consider the following algorithm for learning conjunctions:
 - 1. Set $h = z_1 \wedge \bar{z}_1 \wedge z_2 \wedge \bar{z}_2 \wedge \dots \wedge z_n \wedge \bar{z}_n$. 2. For $i = 1, \dots, m$: 3. If $\phi^*(x_i) == 1$: (Ignore samples with 0 label) 4. For $j = 1, \dots, n$: 5. If $x_{i,j} == 0$: (*j*-th bit of x_i) 6. Drop z_j from h. 7. Else:
 - 8. Drop \bar{z}_j from h.
 - 9. Output h.
 - (a) Apply the algorithm to the sample set $S = \{(0001, 0), (0111, 0), (1001, 1), (1011, 0)\}$, and determine the output. Check that the algorithm has outputed a *stable* hypothesis.
 - (b) Suppose now that the algorithm is indeed a stable learner. Given (ϵ, δ) how many samples are needed to have:

 $P_{x \sim \mathcal{D}}[h_S(x) \neq f(x)] \leq \epsilon$ with probability at least $1 - \delta$

for any distribution \mathcal{D} , and set S?