No Free Lunch Theorem.

Recap from last time:
. $X=$ domain net of "feature rectus"; $Y=$ "label" net
. $z=x \times y, z=(x, y) \longleftarrow$ sample.
. $S=\left\{\left(x, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ "Training set"

- $D(x, y)=D(\jmath \mid x) D(x)$ unknown distr ferreting lid samples.
- $h: X \rightarrow Y$ a rule or an hypothesis.
- H $\rightarrow h$ a clan of rules or "hyp prothesis clan"

- True lon, true cinov, gen error

$$
L_{D}(h)=\mathbb{E}_{z \sim D}[\ell(h, z)] \quad l(h, z)=(y-h(x))^{2}
$$

- Empirical las

$$
L_{S}(h)=\frac{1}{m} \sum_{i=1}^{m} l\left(h, z_{i}\right)
$$

- ERM sule: $\quad h_{S}=\operatorname{ERM}(S)=\operatorname{argmin} L_{S}(h)$

Defimition: Agmostic PAC learming
t is agmostia PAc lecrmable w.r.t Z, l if $\exists m_{\alpha e}:[0,1]^{2} \rightarrow \mathbb{N} ;(\epsilon, \delta) \mapsto m_{\infty}(\epsilon, \delta)$ and a learming rule A such that:
$\forall(F, \delta)$ and $\forall D($ an $Z)$, when rumming A on $m>m_{d e}(\epsilon, \delta)$ iid samples $S \sim D^{m}$

$$
\operatorname{Prob}_{s}\left\{L_{D}(A(s)) \leqslant \min _{h \in \operatorname{de}} L_{D}(h)+\epsilon\right\} \geqslant 1-\delta
$$

Terminologz:

- PAC = Prohahly Arpnoximately Correct
- Reclizable case is when Jhete s.t $L_{\theta}(h)=0$ so $\min L_{g}(h)=0$. We say mat H is PAc learmable. $h \in \mathcal{H}$
if $\exists m_{\text {se }}$ and A s.t $\forall(\varepsilon, \delta), \forall D$ realizahl (i.e $\exists h \in$ re with $L_{g}(h)=0$) for $m>m_{\mu e}(\epsilon, \delta)$ we hen

Agmostic $P A C$ learmable is move severcl and couridens any D.

Last time we saw net all finite hypothesis class $|H|<+\infty$ are agnostic BAC beormath with the ERM rule for $m>m_{d e}^{U c}(\epsilon, \delta)=\left[\frac{1}{2 f^{2}} \log \frac{2 H e \mid}{\delta}\right]$ Of conns this imglien that finite $h y$ pothesir classes ane also PAC learnable.

In exercises on the other hand you saw that infinite danes $|H|=+\infty$ may be PAC learnable, For example $H=$ Threshold functions (and the Coss fut is the 0-1 classifier).

This brings the questions:

* Are all infinite hyp classes PAC learmebl?
* We may also ask a move maine and hafis quetion: Do we meed to restrict ousselver to rule belonging bo some My rothenis clan? In other mach could me find a universal $A($ go that learnsfar any D irven relive of have the restriction $h \in \mathscr{C}$?

The answer h first question will be given in meat chapters and tuns out to be subtle. Save infinite classes are PAC learnable when they are in some sense of effective finite size as captured by the motion of VC (Vapmik-Chermorentir) dimension.

In this chapter we answer the second question:

Fran now on we assume that we are in the reclitesle care. So basically we consider de and D such that $\exists h \in \mathscr{P}: L_{D}(h)=0$.

Moreover we cadres the question only for $\left.y_{ \pm} \pm 0,1\right\}$ dassification problems and the bon function

$$
\begin{aligned}
& \ell(h ; x, y)=t(h(x) \neq y) . \text { In penticuler } \\
& L_{D}(h)=\mathbb{E}(f(h(x) \neq y))=\mathbb{P}(h(x) \neq y) .
\end{aligned}
$$

Proposition.

$$
\left(\text { e.g } X=\mathbb{R}^{N}\right)
$$

Let X be an infinite domain set and let de the set of all functions $h: X \rightarrow\{0,1\}$.
Then $d e$ is mot PAC learnable.
Discussion:
This proposition basically
says that same form of prion Knowledge is mesentery for PAC Cecrmebiliry. The hypothesis clan should be suitably untricted (in ranticulor The ret of all functions $h: X \rightarrow\{0,1\}$ is much too big when X is infinite).

Proof 4 Read often NFL theorem
Sine X is infinite we can take $C \subset X$ with $1 C 1=2 \mathrm{~m}$ whatever integer m size of S is. By me construction of No Free lunch Theorem (der Cater) $\exists D$ which is realizelde(for same f) and at the same time $\mathbb{P}\left(L_{\infty}(f) \geqslant \frac{1}{8}\right) \geqslant \frac{1}{7}$. Toke any $\varepsilon<\frac{1}{8}, \delta<\frac{1}{7}$. We have:

$$
\delta \leqslant \frac{1}{7} \leqslant \mathbb{P}\left(L_{\infty}(f) \geqslant \frac{1}{8}\right) \leqslant \mathbb{P}\left(L_{\infty}(f) \geqslant \varepsilon\right) \Rightarrow \mathbb{P}\left(L_{2}(f) \leqslant \varepsilon\right) \leqslant 1-\delta
$$

Theorem: No free Lunch.

Let A be any learning rule for the task of binary clarification over a finite domain X. ($0-1$ lon assumed hera). Let $m<\frac{|X|}{2}$ be the side of the training set $S=\left(x_{1} \ldots x_{\mu}\right)$. Then there exist a distribution \& over $X \times\{0,1\}=Z$ such that:
a) The ne exist $f: X \rightarrow\{0,1\}$ with $L_{D}(f)=0$
b) $\mathbb{P}\left(L_{D}(A(s)) \geqslant \frac{1}{8}\right) \geqslant \frac{1}{7}$.
for same D.
The theorem says hat a) there exist a learner which succeeds since we are in reelizeble cane it suffices to take ERM and "mimimike" it ave he ret $\{f\}$ trivial,
b) et the same time the lecermen A will fail on D.

So there is No unirusoly sucenful $A \rightarrow y$ "No free lunch".

Proof.
a) We first show $\exists D$ sit $L_{D}(f)=0$.

Let $C \subset \chi$ with $|C|=2 \mathrm{~m}$

\rightarrow Set of all functions $f_{i}: C \rightarrow\{0,1\}$
has candinclitz $J=2^{2 m}$
(for each in gut $x_{1} \ldots x_{2 m}$ we have $2,2 \ldots 2=2^{2 m}$ vassitherelues that define \ln fat).
\rightarrow Define $D_{i}(x, y)= \begin{cases}\frac{1}{|c|} & \text { if } y=f_{i}(x) \\ 0 & \text { of } y \neq f_{i}(x) .\end{cases}$ prob to shone (x, y) is $\frac{1}{|C|}$ if label is correct according to f_{c}.

$$
\mathbb{D}_{2}\left(y \neq f_{i}(x)\right)=0
$$

D:
So equivalently $\bar{E}_{D_{i}}(\mathbb{1}(y \neq h(x)))$

$$
=L_{\partial_{i}}\left(f_{i}\right)=0
$$

We fee that all D_{i} 's $i=1 \ldots 2^{2 m}$ are realizable.

This achiever home rent a).

Now we turn to b).
We will show that

$$
\text { * } \max _{i=1 \ldots 2^{2 m}} \mathbb{E}_{S \sim D_{i}^{m}}\left[L_{D_{i}}\left(A\left(S_{i}\right)\right] \geqslant \frac{1}{4}\right.
$$

So there is same io for which

$$
\mathbb{E}_{S \sim D_{i}^{m}}\left(L_{D_{i}}\left(A\left(s_{i}\right)\right)\right) \geqslant \frac{1}{4}
$$

use will prove later (see Lemma) that this implin

$$
\mathbb{S \sim \theta _ { i } ^ { m }}\left(L_{D_{i}}(A(s)) \geqslant \frac{1}{8}\right) \geqslant \frac{1}{7}
$$

To shew * we proceed as follows:

$$
S=\left(x_{1} \cdots x_{m}\right)
$$

Consider all possible sequencer with sampler in C. There are $K=|C|^{m}$ of hem and recall $|C|=2 \mathrm{~m}$ so $K=(2 \mathrm{~m})^{m}$.

Denote hem $S_{1}, S_{2}, \ldots, S_{k}$.
Fa $S_{j}=\left(x_{1} \ldots x_{m}\right)$ we denote b_{y}

$$
S_{j}^{i}=\left(\left(x, f_{i}\left(x_{i}\right)\right) \ldots .\left(x_{m} f_{i}\left(x_{m}\right)\right)\right) \text { the }
$$

taming sets with the labels corresponding to f_{i}.

If samples are drawn $\sim D_{i}$ then the alporithen A revives the possible training rets $S_{1}^{i} S_{2}^{i} \ldots S_{k}^{i}$ with uniform prob (since the sample n are cham i. C with unit prot)

$$
\Rightarrow \quad \mathbb{E} \quad\left[L_{D_{i}}(A(S))\right]=\frac{1}{K} \sum_{j=1}^{k} L_{D_{i}^{\prime}}\left(A\left(S_{j}^{i}\right)\right)
$$

$$
\begin{aligned}
& \Rightarrow \max _{i=1 \ldots 2^{2 m} \quad \sqrt{t}}^{S \sim D_{i}^{m}}\left[L_{D_{i}}(A(S,))\right] \\
& \geqslant \quad \frac{1}{2^{2 m}} \sum_{i=1}^{2 m} \quad \operatorname{SNOQi}^{2 m}\left[L_{D_{i}}(A(S))\right] \\
& =\frac{1}{k} \sum_{i=1}^{k} \frac{1}{2^{2 m}} \sum_{i=1}^{2 m} L_{D_{i}}^{2 m}\left(A\left(S_{i}^{i}\right)\right) \\
& \geqslant \operatorname{mim}_{j=1 \ldots k} \frac{1}{2^{2 m}} \sum_{i=1}^{2^{2 m}} L_{D_{i}}\left(A\left(S_{j}^{i}\right)\right) \text {. }
\end{aligned}
$$

Now fix same sequence $j \in\{1 \ldots k\}\left(\right.$ recall $\left.k=l C l^{m}\right)$ $S_{2}=\left(x_{1} \ldots x_{m}\right) \subset C$. Let $v_{1} \ldots v_{p}$ the $x \in C$ that are not in S_{j}.

$$
P \geqslant m \text { sine }|C|=2 m
$$

and there can be repetitions in S_{j} -
for any rub h by definition:

$$
L_{D_{i}}(h)=\frac{1}{|C|} \sum_{x \in C} 1\left(f_{i}(x) \neq h(x)\right)
$$

since D_{i} has weight $\frac{1}{\mid C_{1}}$ on $\left(x, y=f_{i}(x)\right)$.

$$
\Rightarrow L_{D_{i}}(h) \geqslant \frac{1}{|c|} \sum_{r=1}^{p} \mathbb{1}\left(f_{i}\left(v_{r}\right) \neq h\left(v_{r}\right)\right)
$$

take only v_{r} mat do met arrear in S_{j}

$$
\geqslant \frac{1}{2 p} \sum_{r=1}^{p} \mathbb{R}\left(f_{i} \cdot\left(v_{r}\right) \neq h\left(v_{r}\right)\right)
$$

Since $|C|=2 \mu \leqslant 2 \rho$.

$$
\begin{aligned}
& \Rightarrow L_{D_{i}}\left(A\left(s_{\alpha}^{\prime},\right)\right) \geqslant \frac{1}{2 p} \sum_{r=1}^{p} \mathbb{I}\left(f_{i}\left(v_{r}\right) \neq A\left(f_{\alpha}^{\prime}\right)\left(v_{r}^{\prime}\right)\right) \\
& \begin{aligned}
& \Rightarrow \frac{1}{2^{2 m}} \sum_{i=1}^{2^{2 m}} L_{D_{i}}\left(A\left(S_{\alpha}^{i}, j\right) \geqslant \frac{1}{2 p} \sum_{r=1}^{p} \frac{1}{2^{2 m}} \sum_{i=1}^{2^{2 m}} \mathbb{P}\left(f_{i}\left(s_{r}\right) \neq A\left(s_{j}^{i}\right) r_{r}\right)\right. \\
&\text { we shew below that })
\end{aligned}
\end{aligned}
$$

Thus $\frac{1}{2^{2 m}} \sum_{i=1}^{2^{2 m}} L_{D_{i}}\left(A\left(S_{j}^{i}\right) \geqslant \frac{1}{4} \quad \forall j\right.$. and caubiming with imegn above on rage 9 ;

$$
\begin{aligned}
& \max _{i=1 \ldots 2^{2 m}}^{\operatorname{Rn}} \operatorname{s\sim g}_{i}^{m}\left[L_{D_{i}}(A(s))\right] \\
& \geqslant \operatorname{mim}_{j=1 \cdots k} \frac{1}{2 m} \sum_{i=1}^{2^{2 m}} L_{D_{i}}\left(A\left(S_{j}^{i}\right) \geqslant \frac{1}{4} .\right.
\end{aligned}
$$

Now it remains he show:

$$
\frac{1}{2^{2 m}} \sum_{i=1}^{2} \mathbb{U}\left(f_{i}\left(v_{r}\right) \neq A\left(S_{j}^{i}\right)\left(v_{r}\right)\right) \geqslant \frac{1}{2}
$$

This sum is over set of functions $f_{1} f_{2} \cdots f_{2 m}$ There are $\frac{2^{2 m}}{2}$ disjoint rains $\left(f_{1}, f_{i}\right.$,) such that;

$$
\forall x \in C \quad f_{i}^{\prime}(x) \neq f_{i}(x) \quad \text { if } \quad x=v_{r} .
$$

Recall $v_{1} \ldots v_{p}$ are the $x \in C$ not seen in Sj. The pairs are as follows;

$$
\begin{aligned}
\frac{1}{2^{2 m}} \sum_{i=1}^{2^{2 m}}+\underbrace{T\left(f_{i} \cdot\left(v_{r}\right) \neq A\left(S_{j}^{i}\right)\left(v_{r}\right)\right)}_{2^{2 m}}=\frac{1^{2}}{2} \\
=1 \text { far half of } f_{i}^{2 m} \\
=0 \text { for othnhelf of } f_{i}
\end{aligned}
$$

This ouch proof of No free lunch.

Lemma (ureal previously).

$$
\mathbb{E}\left(L_{D_{i}}\left(A\left(s_{i}\right)\right)\right) \geqslant \frac{1}{4} \Rightarrow \operatorname{Prob}\left(L_{D_{i}}\left(A\left(s_{i}\right)\right) \geqslant \frac{1}{8}\right) \geqslant \frac{1}{7}
$$

Proef.
It sufficen to phow that for a r.v $Z \in[0,1]$ we must have:

$$
\mathbb{M}(z \geqslant a) \geqslant \frac{E(z)-a}{1-a}
$$

Cherene $Z=L_{D_{i}}\left(A\left(r_{i}\right) \quad \& \quad a=\frac{1}{8}\right.$.

The preref is an application of Mankor's imegn for a porilies r.v $X \geqslant 0$:

$$
\mathbb{\#}(x \geqslant b) \leqslant \frac{\mathbb{E}(x)}{b}
$$

Now let $X=1-Z$. This is $\geqslant 0$. Thus

$$
\begin{aligned}
\mathbb{P}(1-z \geqslant b) & \leqslant \frac{1-\mathbb{F}(z)}{b} \\
\Rightarrow \mathbb{P}(1-z \leqslant b) & \geqslant 1-\frac{1-F(z)}{b} \\
& =\frac{b-1+\mathbb{F}(z)}{b}
\end{aligned}
$$

Tok $b=1-a$. We get

$$
\mathbb{P}(\underbrace{1-z \leqslant 1-a}_{z \geqslant a}) \geqslant \frac{\mathbb{F}(z)-a}{1-a}
$$

Remonks an Bicr- Complexity Tredioff.

Let $h_{S}=\operatorname{ERM}(S)=\operatorname{aymin} L_{S}(h)$ h
the hyrotheris clan given by the ERM rul. The tent ena of an ERM predicta is $L_{D}\left(h_{s}\right)$. We can decompore it as:

$$
\begin{aligned}
& L_{D}\left(h_{s}\right)=\underbrace{\operatorname{mim}_{h \in \operatorname{sen}} L_{D}(h)}_{\begin{array}{c}
\text { arprox enar } \\
\text { a "brias" of }
\end{array}}+\underbrace{\left(L_{D}\left(h_{s}\right)-\min _{h \in r e} L_{D}(h)\right)}_{\text {estimation ena }} \\
& \text { hyp lan }=\varepsilon_{\text {apr }}
\end{aligned}
$$

- We have chbiouply Mar Eapr $>$ as \mid de $\mid \nearrow$
- We also expeat usnald Eest λ as $\mid d i l$. Fer example the generelisction bud shown fo finite clases suggerts $E_{\text {er }} \sim \sqrt{\frac{1}{2 m} \log \frac{2 H e l}{\sigma}} \lambda$ as $\mid \mathrm{Hel} \lambda$

$$
|H|=\text { clan } \text { convexity }
$$

This is the traditional trias-camplexity trade off picture. Increasing de decrearing om tics but at some point may bed to crenfittag.

This picture her keen che lunged in recent gears.
Indeed there are riluations displaying a "double descent" phenomenon
 ovenparemetrized regimes.
and it is recognized hat the picture is much richer.

