Remediation of soils and groundwater Rizlan Bernier-Latmani Problem set #1: contaminant properties

Problem 1:

10 mL gas =
$$10^{-5}$$
 m³ = V_G
90 mL water = $9 \cdot 10^{-5}$ m³ = V_L

$$T = 20 \, ^{\circ}C$$

 $M_S = 36$ mg solid with specific gravity of 1

$$36 \cdot 10^{-3} g \cdot \frac{1cm^3}{1g} \rightarrow V_s = 3.6 \cdot 10^{-8} \text{ m}^3$$

$$f_{OC} = 0.1$$

10 mg PCE

$$MW_{PCE} = 166$$

$$K_{H'} = 0.6$$

$$Log K_{OW} = 2.67$$

Mass balance:

$$m_{PCE,aq} + m_{PCE,g} + m_{PCE,s} = m_{PCE,t} = 10^{-2}g$$
 (1)

Partitioning coefficients:

$$K'_{H} \cdot \frac{V_{G}}{V_{L}} \cdot m_{PCE,aq} = m_{PCE,g} \tag{2}$$

$$\frac{K_D \cdot m_{PCE,aq} \cdot M_S}{V_I} = m_{PCE,S} \tag{3}$$

Calculating Kn

$$\log K_{OC} = 0.989 \cdot \log K_{OW} - 0.346 = 2.29$$

$$K_D = f_{OC} \cdot K_{OC} = 19.7 \frac{m^3}{q}$$

Three equations and three unknowns:

From equation (1):

$$\begin{split} m_{PCE,aq} + \frac{K'_H \cdot V_G}{V_L} \cdot m_{PCE,aq} + \frac{K_D \cdot M_S}{V_L} \cdot m_{PCE,aq} &= 10^{-2}g = m_{PCE} \\ m_{PCE,aq} = \frac{10^{-2}g}{\frac{0.6 \cdot 10^{-5}m^3}{9 \cdot 10^{-5}m^3} + \frac{19.7 \frac{m^3}{g} \cdot 36 \cdot 10^{-3}g}{9 \cdot 10^{-5}m^3} + 1} &= \frac{10^{-2}g}{0.0666 + 7880 + 1} \\ m_{PCE,aq} &= 1.27 \cdot 10^{-6}g \\ m_{PCE,s} &= 7880 \cdot 1.27 \cdot 10^{-6}g = 1.00 \cdot 10^{-2}g \\ m_{PCE,g} &= 0.0666 \cdot 5.6 \cdot 10^{-3}g = 8.46 \cdot 10^{-8}g \end{split}$$

Problem 2:

$$\begin{split} & m_{cont,total} = m_{cont,g} + m_{cont,aq} \\ & m_{cont,total} = C_{cont,total} \, V_L = \, C_{cont, \, aq} K_H \text{'} \, V_G + C_{cont, \, aq} \, V_L \end{split}$$

$$C_{cont, aq} = \frac{C_{cont, total} \cdot V_L}{K'_H \cdot V_G + V_L}$$

$$C_{benz,\;aq}=34.2\;\mu g/L$$

$$C_{tol, aq} = 32.1 \mu g/L$$

$$C_{\text{ethylbenz, aq}} = 25.6 \, \mu \text{g/L}$$

$$C_{xyl, aq} = 26.2 \mu g/L$$

The actual concentration in the aqueous phase is much lower than the intended concentration. This solution needs to be stored with minimal headspace to minimize the volatilization of the compounds.

Problem 3:

$$\begin{split} &C_{benz,s,initial} = 900 \text{ mg/kg dry soil} \\ &K_D = 0.02 \text{ m}^3/\text{kg} \\ &Solids \text{ concentration} = 40 \text{ kg dry soil/m}^3 \text{ slurry} \\ &V_T = volume \text{ of slurry} = 500 \text{ m}^3 \\ &\rho_s = 2,000 \text{ kg/m}^3 \\ &assume \text{ no headspace} \end{split}$$

a- What is V_L?

$$M_S = \frac{40kg}{m^3 slurry} \cdot 500 \text{ m}^3 \text{ slurry} = 20,000 \text{ kg soil}$$

 $V_S = 20,000 \text{ kg} \cdot \frac{1m^3}{2,000kg} = 10 \text{ m}^3$
 $V_L = 490 \text{ m}^3$

$$\begin{split} &b \text{ - what is } C_{benz, \text{ aq}}? \\ &m_{benz, total} = m_{benz,s} + m_{benz,aq} \\ &m_{benz, total} = C_{benz, s, initial} \cdot \quad M_s = C_{benz, \text{ s}} \cdot \quad M_S + C_{benz, \text{ aq}} \cdot \quad V_L = C_{benz, \text{ aq}} K_D M_S + C_{benz, \text{ aq}} \quad V_L \end{split}$$

$$C_{benz,aq} = \frac{C_{benz,initial} \cdot M_s}{K_D \cdot M_s + V_L} = \frac{900 \frac{mg}{kg} \cdot 20,000 kg \cdot \frac{1g}{10^3 mg}}{0.02 \frac{m^3}{kg} \cdot 20,000 kg + 490 m^3} = 20.2 \frac{g}{m^3}$$

Problem 4:

A – In a river

$$\begin{split} &C_{SS}=10~mg/L\\ &K_{OW}=10^6~(PCB)\\ &\rho_S=1~g/cm^3\\ &f_{OC}=0.1 \end{split}$$

What is the distribution of PCB between water and suspended solids?

$$K_D = \frac{C_{i,s}}{C_{i,aq}} \frac{[g/g]}{[g/m^3]} = 0.63 \cdot 10^{-6} \cdot f_{OC} \cdot K_{OW} = 6.3 \cdot 10^{-2} \frac{m^3}{g}$$

Fraction in the solid phase:

$$f_{PCB,s} = \frac{m_{PCB,s}}{m_{PCB,s} + m_{PCB,aq}} = \frac{\frac{m_{PCB,s}}{m_{PCB,aq}}}{\frac{m_{PCB,aq}}{m_{PCB,aq}} + 1}$$

$$\begin{split} \frac{m_{PCB,s}}{m_{PCB,aq}} &= K_D \cdot C_{SS} = 6.3 \cdot 10^{-2} \frac{m^3}{g} \cdot \frac{10mg}{L} \cdot \frac{1'000L}{1m^3} \cdot \frac{1g}{1'000mg} \\ &= 0.63 \frac{g \ PCB \ on \ solid}{g \ PCB \ in \ solution} \end{split}$$

$$f_{PCB,s} = \frac{0.63}{1.63} = 0.39$$

Comment: over 1/3 of the PCB is on solids even if the solids represent 0.001 % of the total volume

B - For carbon tetrachloride CCl₄ (CT)

$$K_{OW} = 440$$

 $\rho_S = 1.1 \text{ g/cm}^3$
 $f_{OC} = 0.02$

$$K_D = 0.63 \cdot 10^{-6} \cdot f_{OC} \cdot K_{OW} = 5.5 \cdot 10^{-6} \frac{m^3}{g}$$

Dimensionless partitioning coefficient:

$$K_{p} = \frac{C_{CT,s} in \frac{g}{m_{s}^{3}}}{C_{CT,aq} in \frac{g}{m_{aq}^{3}}}$$

$$K_{r} = K_{p} o_{r} = 5.5 \cdot 10^{-6} \frac{m^{3}}{m_{s}^{3}} = 6.1$$

$$K_p = K_D \cdot \rho_s = 5.5 \cdot 10^{-6} \frac{m^3}{g} \cdot 1.1 \frac{g}{cm^3} \frac{10^6 \text{ cm}^3}{m^3} = 6.1 [-]$$

C - Mass distribution

 $V_S/V_T = 10^{-4}$; an approximation is that $V_S/V_L \sim 10^{-4}$

$$\frac{m_{CT,s}}{m_{CT,aq}} = K_p \ \frac{V_S}{V_L} = 6.1 \ 10^{-4}$$

For CT, the distribution between solid and aqueous phase is very different as compared to PCBs. This is due to the difference in $K_{\rm OW}$. PCBs have a high $K_{\rm OW}$ because they are hydrophobic and tend to associate with organic matter.