Remediation of soil and groundwater Rizlan Bernier-Latmani Problem set #1: contaminant properties

Problem 1:

A closed bottle contains 10 mL of air and 90 mL of water. Suspended in water is 36 mg of particulate (solid) matter having a specific gravity of 1.0 and an organic carbon fraction of 0.1. The bottle contains 10 mg of tetrachloroethene (CCl₂=CCl₂) also known as perchloroethylene (PCE), which has the following properties:

$$MW= 166 \text{ g/mol}$$
; $K'_{H}= 0.6$; $\log K_{OW}= 2.67$

The Karickhoff relationship links K_{OW} and K_{OC} in the following manner:

 $Log K_{OC} = 0.989 log K_{ow} - 0.346 (K_{OC} units are m³/g in this case)$

Calculate the mass distribution of PCE between the air, the aqueous solution and the suspended solids.

Problem 2:

You have prepared 100 mL of a combined aqueous standard containing 100 μ g/L each of benzene, toluene, ethylbenzene and p-xylene (BTEX). You store this solution in a 1L bottle. Calculate the equilibrium concentration (μ g/L) of each component in the water. Can you suggest a better storage alternative?

K_H'=0.214 benzene, K_H'=0.235 toluene, K_H'=0.322 ethylbenzene, K_H'=0.313 p-xylene

Problem 3:

A contaminated soil is placed in a sealed reactor with a capacity of 500 m³ and amended with water. The soil contains 900 mg benzene/kg dry soil. The following information is available:

K_D=0.02 m³/kg; K_H'=0.214 benzene

Solids concentration in reactor: 40 kg dry soil/m³ slurry; Volume of slurry: 500 m³ Soil dry solid density ρ_s =2,000 kg/m³

- a- Calculate the volume of soil and water in the reactor.
- b- Calculate the concentration of benzene in the water.

Problem 4:

The Karickhoff relationship links K_{OW} and K_{OC} in the following manner: $K_D = 0.63 * 10^{-6} * f_{OC} * K_{OW}$ (K_D units are m^3/g in this case).

A- Rivers typically contain suspended solids (floating particles) in the concentration C_{SS}

- = 1 to 100 mg/L where C_{SS} is the solids concentration expressed as (mg dry solids/L). What is the fraction of PCBs (polychlorinated biphenyls) in the solid? Given: K_{ow} (PCB)=10⁶; C_{SS} = 10 mg/L; f_{OC} = 0.1; ρ_s = 1 g/cm³. Note: high f_{OC} because particles contain lots of biological matter such as algae.
- B- Calculate the distribution coefficient K_D for the partitioning of CCl_4 between water and solids given that K_{OW} =440 and the organic carbon content of the solid phase is f_{OC} =0.02. Calculate the dimensionless ratio of solid and aqueous concentrations given that the density of solids is ρ_s = 1.1 g/cm³
- C- Calculate the distribution of CCl₄ mass between the solid and solution phases given that the solid phase is suspended in the water column and occupies 0.01% of the total volume.