Advanced Probability and Applications EPFL - Fall Semester 2024-2025
Solutions to Homework 9

Exercise 1.

a) Fix € > 0. Then

P(| X, —C|>¢€) =P(X,,<C—¢€)+P(X,, >C+e¢€) < Fx,(C—¢€)+(1—-Fx,(C+e) — 0

n—oo

d
whenever X,, — C.
n—oo

b) Assume that r > s > 1 and that

E(X, - X|") — O.

n—0o0

Similar to exercise 4 a) on the midterm, we can use Jensen’s inequality to show
E(|X, — X[*)* <E(X, - X[")

by applying the convex function f(z) = z"/5. Then

r
s

E(| X, — X7 SE(X, - X)) = 0= E(X, - X[)F > 0= E(X,— X[) - 0.

n—oo
And therefore X, L ox.
n—oo

¢) We have that
[E(Xn) — E(X)| = [E(Xn — X)| <E(|X, — X]) — 0.

n—oo

Therefore E(X,,) = E(X).

The converse is not true. Consider the sequence (X,,,n > 1) of i.i.d. Bernoulli(p) random variables,
with 0 < p < 1. Then E(X,,) — E(X). However
n—oo

1 1
E(|X,— X[) =5 145-0=.

This does not converge to zero as n goes to infinity.

35 S0\
2(2+2>—50

Exercise 2. a) Let us compute first
1
E(S1) = =

Assuming now that E(S,) = Sy (more precisely, that the expectation stays constant over n coin
tosses), let us compute E(Sy41):

E(Sn+1) = E(Sn41[{X1 = +1}) P{X; = +1}) + E(Sp1[{X1 = -1} P({X1 = —1})
_ % <E(Sn+1!{51 - 37‘% )+ B(Snsr[{S1 = 3'20})> _ % <3250 N 5;o> _s

Note: The computation is slightly unorthodox here, but we will see a cleaner way to prove this
later in the course.



b) Y, is the sum of n i.i.d. random variables, as the following computation shows:
Sh & X; - X;
Yn:10g<so>:log H(1+2 :ZIOg 1+7
Jj=1 j=1
and these random variables are bounded, so by the central limit theorem,

Y,—nu d

\/ﬁo' n—00

where 1 = E(log(1 + X1/2)) = L (log(3/2) + log(1/2)) ~ —0.144 and
% g 5 (log g

Z ~ N(0,1)

o? = Var(log(1 + X1/2)) = = (log(3/2)? + log(1/2)?) — u*> ~ 0.3

N =

This is saying that for large n, we have
Y, ~ —0.144n 4+ v0.26n Z in particular: Yigo ~ —14.4+ 547
Therefore

P({S100 > S0/10}) = P({S100/S0 > 1/10}) = P({Y100 > — log(10))

~P ({Z > _2352144}> =P{Z > 2.24})

which is roughly 1% (so you can imagine what P({S100 > So}) looks like ...).

Therefore, the process (Sy, n > 1), unexpectedly perhaps, “crashes” to zero with high probability
as n gets large, even though it seemed a priori a “fair game” with constant expectation. This is
an important example among a large class of processes called “martingales”; we will come back to
this!

Note: The random process (S,, n > 1) is not unrelated to the following deterministic process
defined recursively as
T /2 if z,, is even

9 € N*, =z =
0 i {?mn—l—l if x,, is odd

in which an even number gets multiplied by 1/2 and an odd number gets approximately multiplied
by 3/2 (because it first gets multiplied by 3 and then necessarily divided by 2, as 3z, + 1 is even).
So if you consider that even and odd numbers appear naturally with probability 1/2, then the two
processes have something in common. But in the deterministic case, one has no proof that the
process ultimately reaches the value 1 as n gets large: this is the famous Collatz conjecture, which
remains unsolved until now.

Exercise 3. a) let us compute E(S,) =37, IE(X](-n)) =n2=)\and

O )y A A\ A2
Var(Sn)—;Var(Xj )—nﬁ <1n> _)\7?

b) So p = lim,, 00 E(S,) = A and 02 = lim,, o, Var(S,) = \.



c¢) Let us compute the characteristic function of S,,:
05, (1) = E(exp(itS,)) = E(exp(it (X" +... + X)) = E(exp(itX}")) - E(exp(it X))
n A n it 1)\" ,
= (E(exp(itX{ )))> = <e’t A +1-— A) = <1 + /\(e)> — exp (A" — 1))

n n—oo

This limiting function is the characteristic function of Z ~ P()). Indeed, one can check that

— exp(A (¢ — 1))

62(1) = E(exp(itZ)) = 3 '™ i

k>0 k>0

which allows us to conclude that S, i Z.
n—oo

d) The computation of the characteristic function is similar here:

E (¢"Tn) = (; e + <1 - i)) - = <1 + % (e — 1)) . — exp(M(e — 1))

n—oo

and leads actually exactly to the same result: 7, converges in distribution towards a Poisson
random variable Z of parameter \.

e) No, as each random variable S,, is constructed from a different set of random variables X fn), cen X,(ln),
which depends on n. The same holds for the random variables T;,.



