Advanced Probability and Applications EPFL - Fall Semester 2024-2025

Homework 9

Exercise 1*.

a) Show that if $X_n \underset{n \to \infty}{\to} C$ where C is a constant, then $X_n \underset{n \to \infty}{\overset{\mathbb{P}}{\to}} C$.

b) Given a sequence of random variables $(X_n, n \geq 1)$, a random variable X, and $r \geq 1$, we say that X_n converges to X in rth mean (written $X_n \underset{n \to \infty}{\to} X$) if $\mathbb{E}(|X_n^r|) < \infty$ for all n and

$$
\mathbb{E}(|X_n - X|^r) \underset{n \to \infty}{\to} 0.
$$

Show that if $r > s \geq 1$ then,

$$
X_n \underset{n \to \infty}{\overset{L^r}{\to}} X \Rightarrow X_n \underset{n \to \infty}{\overset{L^s}{\to}} X.
$$

c) Suppose that $X_n \underset{n \to \infty}{\overset{L^1}{\to}} X$. Show that $\mathbb{E}(X_n) \underset{n \to \infty}{\to} \mathbb{E}(X)$. Is the converse true?

Exercise 2. Someone proposes to you the following game: start with an initial amount of $S_0 > 0$ francs, of your choice. Then toss a coin: if it falls on heads, you win $S_0/2$ francs; while if it falls on tails, you lose $S_0/2$ francs. Call S_1 your amount after this first coin toss. Then the game goes on, so that your amount after coin toss number $n \geq 1$ is given by

$$
S_n = \begin{cases} S_{n-1} + \frac{S_{n-1}}{2} & \text{if coin number } n \text{ falls on heads} \\ S_{n-1} - \frac{S_{n-1}}{2} & \text{if coin number } n \text{ falls on tails} \end{cases}
$$

We assume moreover that the coin tosses are independent and fair, i.e., with probability $1/2$ to fall on each side. Nevertheless, you should not agree to play such a game: explain why!

Hints:

First, to ease the notation, define $X_n = +1$ if coin n falls on heads and $X_n = -1$ if coin n falls on tails. That way, the above recursive relation may be rewritten as $S_n = S_{n-1} \left(1 + \frac{X_n}{2}\right)$ for $n \ge 1$.

a) Compute recursively $\mathbb{E}(S_n)$; if it were only for expectation, you could still consider playing such a game, but. . .

b) Define now $Y_n = \log(S_n/S_0)$, and use the central limit theorem to approximate $\mathbb{P}(\{Y_n > t\})$ for a fixed value of $t \in \mathbb{R}$ and a relatively large value of n. Argue from there why it is definitely not a good idea to play such a game! (computing for example an approximate value of $\mathbb{P}(\{S_{100} > S_0/10\})$)

Exercise 3. Let $\lambda > 0$ be fixed. For a given $n \geq \lceil \lambda \rceil$, let $X_1^{(n)}$ $X_1^{(n)}, \ldots, X_n^{(n)}$ be i.i.d. Bernoulli (λ/n) random variables and let $S_n = X_1^{(n)} + \ldots + X_n^{(n)}$.

- a) Compute $\mathbb{E}(S_n)$ and $\text{Var}(S_n)$ for a fixed value of $n \geq \lceil \lambda \rceil$.
- b) Deduce the value of $\mu = \lim_{n \to \infty} \mathbb{E}(S_n)$ and $\sigma^2 = \lim_{n \to \infty} \text{Var}(S_n)$.
- c) Compute the limiting distribution of S_n (as $n \to \infty$).

Hint: Use characteristic functions. You might also have a look at tables of characteristic functions of some well known distributions in order to solve this exercise.

For a given $n \geq 1$, let now $Y_1^{(n)}$ $Y_1^{(n)}, \ldots, Y_n^{(n)}$ be i.i.d. Bernoulli $(1/n)$ random variables and let

$$
T_n = Y_1^{(n)} + \ldots + Y_{\lceil \lambda n \rceil}^{(n)}
$$

where $\lambda > 0$ is the same as above.

d) Compute the limiting distribution of T_n (as $n \to \infty$).

e) Is it also the case that either S_n or T_n converge almost surely or in probability towards a limit? Justify your answer!