Advanced Probability and Applications EPFL - Fall Semester 2024-2025
Solutions to Homework 8

Exercise 1. a) For a given ¢ > 0, let us first consider n sufficiently large such that
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(such an n exists by assumption). For the same value of n, we have
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b) We can check here that for n > m > 1, we have
Cov(Xp, Xm) = a" ™ Var(X,,)
and also that Var(X;) =0 and
Var(Xp,) =1+ a?Var(Xp_1) = ... =1+a>+a* +... +a®™ 2 form >2

From this, we conclude that when |a| < 1, Cov(X,, X,,) satisfies the condition given in the problem
set. Besides, for every n > 1, we have
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when |a| < 1, for any value of x € R. So = 0 in this case and
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Exercise 2. a) For € > 0 and n > 1 fixed, let us compute, using the law of total probability:
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by independence of T;, and the sequence (X,, n > 1). From the proof of the weak law of large
numbers, we know that for every k > 1:
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A sufficient condition ensuring convergence in probability is therefore: lim Z P _ 0.
n—oo = k

bl) Let us compute for n > 1 and k > 2: (noting that the probability is equal to zero for k = 1)
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This implies that
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Note: This result could also have been obtained using E(7},) = E(Gy1) + E(Gy2) together with the
fact that a geometric random variable with parameter ¢ has expectation 1/(1 — ¢). [NB: geometric
random variables with parameter ¢ can be defined either on N* = {1,2,3,...} (as it is the case
here) or on N = {0, 1,2,...}, their expectation is equal to ¢/(1 — ¢) in the latter case]

b2) From the above computations, we see that
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so convergence in probability occurs if ¢, — 1. This is in accordance with the fact that
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E(T,) oo in this case (see part a).



Exercise 3*. a) For all z,y, z € R we have
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where the first inequality follows from the fact that logy(1 + ) is an increasing function in x and
the last inequality follows from the hint. Now, since the inequality holds for X (w),Y (w), Z(w) for
every w € {2, we can take the expectation of both sides to get the desired result.

b) Fix e > 0 and note that convergence in probability implies that

lim P({|X, — X| > e}) =0.

For simplicity, define g(z,y) = log, (1 + 1J|::I;2|y\> We can write
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Since this is true for any €, we can further take a limit as € goes to zero to get the desired result.

c¢) Yes, the converse is also true. Fix ¢ > 0 and define v = log, (1 + ﬁ) Then

1
PH{|IXn - X|>€})=v- ;E (11x,—x|>¢)
1
=K (9(Xn, X)1jx,—x|2¢)
1
< Zd(X,, X).
< Vd( )

Since for a fixed €, v is just a constant, we have that

lim B({|X, ~ X| > }) = lim d(X,, X) = 0.
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