
Advanced Probability and Applications EPFL - Fall Semester 2024-2025

Solutions to Homework 8

Exercise 1. a) For a given ε > 0, let us first consider n sufficiently large such that∣∣∣∣µ1 + . . .+ µn

n
− µ

∣∣∣∣ < ε

2

(such an n exists by assumption). For the same value of n, we have

P
({∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ε

})
≤ P

({∣∣∣∣Sn

n
− µ1 + . . .+ µn

n

∣∣∣∣ ≥ ε

2

})

= P

({∣∣∣∣∣
n∑

i=1

(Xi − µi)

∣∣∣∣∣ ≥ nε

2

})
≤ 4

n2 ε2
E

( n∑
i=1

(Xi − µi)

)2


=
4

n2 ε2

n∑
i,j=1

Cov(Xi, Xj) ≤
4C1

n2 ε2

n∑
i,j=1

exp(−C2 |i− j|)

≤ 8C1

n ε2

∑
k∈Z

exp(−C2 |k|) −→
n→∞

0, as
∑
k∈Z

exp(−C2 |k|) < +∞

b) We can check here that for n ≥ m ≥ 1, we have

Cov(Xn, Xm) = an−mVar(Xm)

and also that Var(X1) = 0 and

Var(Xm) = 1 + a2Var(Xm−1) = . . . = 1 + a2 + a4 + . . .+ a2(m−2) for m ≥ 2

From this, we conclude that when |a| < 1, Cov(Xn, Xm) satisfies the condition given in the problem
set. Besides, for every n ≥ 1, we have
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when |a| < 1, for any value of x ∈ R. So µ = 0 in this case and
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Exercise 2. a) For ε > 0 and n ≥ 1 fixed, let us compute, using the law of total probability:
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by independence of Tn and the sequence (Xn, n ≥ 1). From the proof of the weak law of large
numbers, we know that for every k ≥ 1:
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A sufficient condition ensuring convergence in probability is therefore: lim
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b1) Let us compute for n ≥ 1 and k ≥ 2: (noting that the probability is equal to zero for k = 1)
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This implies that
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Note: This result could also have been obtained using E(Tn) = E(Gn1)+E(Gn2) together with the
fact that a geometric random variable with parameter q has expectation 1/(1− q). [NB: geometric
random variables with parameter q can be defined either on N∗ = {1, 2, 3, . . .} (as it is the case
here) or on N = {0, 1, 2, . . .}, their expectation is equal to q/(1− q) in the latter case]

b2) From the above computations, we see that
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so convergence in probability occurs if qn →
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1. This is in accordance with the fact that
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+∞ in this case (see part a).
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Exercise 3*. a) For all x, y, z ∈ R we have
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where the first inequality follows from the fact that log2(1 + x) is an increasing function in x and
the last inequality follows from the hint. Now, since the inequality holds for X(ω), Y (ω), Z(ω) for
every ω ∈ Ω, we can take the expectation of both sides to get the desired result.

b) Fix ϵ > 0 and note that convergence in probability implies that
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Since this is true for any ϵ, we can further take a limit as ϵ goes to zero to get the desired result.

c) Yes, the converse is also true. Fix ϵ > 0 and define ν = log2
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Since for a fixed ϵ, ν is just a constant, we have that
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