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Exercise 1.*

a) Consider

log(Yn) =
1

n

n∑
j=1

log(Xj)

As log(Xj) are i.i.d. bounded random variables, the strong law of large numbers applies, so

1

n

n∑
j=1

log(Xj) →
n→∞

E(log(X1)) almost surely

so µ = exp(E(log(X1))).

b) In this case E(log(X1)) =
log(a)+log(b)

2 , so µ =
√
ab.

c) Observing that log(Xj) ∈ [log(a), log(b)] and using (the generalized version of) Hoeffding’s
inequality, we obtain

P({Yn ≥ t}) = P({log(Yn)− log(µ) ≥ log(t)− log(µ)}) ≤ exp

(
−2n (log(t)− log(µ))2

(log(b)− log(a))2

)
so P({Yn ≥ t}) ≤ Cn for every t > µ =

√
ab, and a possible value for C is exp(−2 (log(t)−log(µ))2

(log(b)−log(a))2
)

(note that the same result may be obtained by a direct computation and the use of the inequality
cosh(x) ≤ exp(x2/2)).

And a weaker result can be obtained also via the inequality

P({Yn ≥ t}) ≤ E(Y n
n )

tn
=

(
E(X1)

t

)n

=

(
a+ b

2t

)n

which shows only that concentration holds for every t > a+b
2 (and not t > µ).

(For homework grading, any non-trivial bound with valid justification is accepted.)

Exercise 2.

a)

P
({

TN√
N

≤ t

})
= 1− P

({
TN√
N

> t

})
= 1− P

({
TN >

√
Nt
})

= 1−
⌊
√
Nt⌋−1∏
k=1

(
1− k

N

)

≈ 1−
⌊
√
Nt⌋−1∏
k=1

(
e−k/N

)
= 1− e

−S⌊
√
Nt⌋ where Sn =

1

N

n−1∑
k=1

k =
n(n− 1)

2N

1



where the approximation holds for small k/N . As N → ∞, S⌊
√
Nt⌋ → t2/2. Thus,

P
({

TN√
N

≤ t

})
→

N→∞
1− e−t2/2.

b)

P ({T365 ≤ 22}) ≈ P
({

T365 ≤ 1.15
√
365
})

≈ 1− e−1.152/2 ≈ 0.484

and
P ({T365 ≤ 50}) ≈ P

({
T365 ≤ 3.07

√
365
})

≈ 1− e−3.072/2 ≈ 0.991.

Exercise 3.

a) Let (Yn, n ≥ 1) be random variables such that Yi = Xi/
√
VN for some fixed N . Let (Zn, n ≥ 1)

be independent normal random variables such that E(Zi) = 0,E(Z2
i ) = σ2

i /VN . We know the
following:

E(Yi) = E(Zi) = 0

E(Y 2
i ) = E(Z2

i ) = σ2
i /VN

E(|Yi|3) ≤ K((σi/
√
VN )3)

E(|Zi|3) = O((σi/
√

VN )3).

From Lemma 9.12, we know

|E(g(Y1 + · · ·+ YN ))− E(g(Z1 + · · ·+ ZN ))| ≤ C

6

N∑
i=1

(E(|Yi|3) + E(|Zi|3))

≤ C

6

N∑
i=1

(K((σi/
√
VN )3) +O((σi/

√
VN )3))

≤ O

(∑N
i=1(σi)

3

√
VN

3

)

≤ O

 ∑N
i=1(σi)

3(∑N
i=1(σi)

2
)3/2



Following the ideas in the lecture notes, we know that 1√
Vn

(X1 + . . . + Xn)
d→

n→∞
Z ∼ N (0, 1) if

|E(g(Y1 + · · · + YN )) − E(g(Z1 + · · · + ZN ))| →
n→∞

0. This holds when the sequence (σn, n ≥ 1)

satisfies the condition ∑N
i=1(σi)

3(∑N
i=1(σi)

2
)3/2 →

N→∞
0.

b) Only the first one satisfies the condition. For σn = n,∑n
i=1 i

3

(
∑n

i=1 i
2)3/2

=
O(n4)

O(n3)3/2
= O(n−1/2) →

n→∞
0.
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For σn = 1/n, ∑n
i=1 i

−3

(
∑n

i=1 i
−2)3/2

=
O(1)

O(1)3/2
= O(1) →

n→∞
C.

For σn = 2n, ∑n
i=1 8

n

(
∑n

i=1 4
n)3/2

=
O(23n)

O(22n)3/2
= O(1) →

n→∞
C.

Exercise 4.

We are given i.i.d random variables (Xn, n ≥ 1), with E(X1) = 1 and Var(X1) = σ2. Thus,

E(Sn) = n

Var(Sn) = nσ2

Therefore, from the central limit theorem (CLT), we have

Sn − n

σ
√
n

d→ X (1)

where X is a standard Gaussian random variable i.e., N (0, 1).

Now, note that

2

σ
(
√
Sn −

√
n) =

(Sn − n

σ
√
n

)( 2
√
n√

Sn +
√
n

)
(2)

Now, to show that the L.H.S converges to the random variable X, we need to show that the product
on the R.H.S converges to X.

Let’s denote
(
Sn−n
σ
√
n

)
and

(
2
√
n√

Sn+
√
n

)
by Un and Vn, respectively. From the Equation 1, we have

that Un
d→ X. Independently, from the strong law of large numbers (SLLN), we know that Sn

a.s→ n

(implying also Sn
d→ n). From the continuous mapping theorem (see below), we therefore have

that Vn
d→ 1.

So, we have Un
d→ X and Vn

d→ 1, the question we seek to answer next is whether the product

sequence i.e., Un.Vn
d→ X.1?

The answer is YES!, due to a result from Slutsky, which is stated below (and can be proven with
minimal effort):

Slutsky’s Theorem: Let (Xn, n ≥ 1) and (Yn, n ≥ 1) be a sequence of i.i.d random variables

defined on the probability space (Ω,F ,P) such that Xn
d→ X (where X is a random variable on the

same probability space) and Yn
d→ c (where c is a real and invertible constant). Then, the following

is always true:

1. Xn + Yn
d→ X + c

2. Xn − Yn
d→ X − c

3. Xn.Yn
d→ X.c
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4. Xn
Yn

d→ X
c

Hint for the proof (Only if you’d like to try!): The main idea behind proving the above result is
showing that the joint vector (Xn, Yn) converges to (X, c) in distribution. It could be done in two
steps. First, try showing that the sequence ((Xn, Yn)−(Xn, c)), n ≥ 1) converges to 0 in probability
(which implies convergence in distribution). Then, show that ((Xn, c), n ≥ 1) converges to (X, c)
in distribution.

Thus, on using the Slutsky’s theorem for the Equation 2, we have the desired result i.e.,

2

σ
(
√
Sn −

√
n)

d→ X

Note: The continuous mapping theorem extends the Heine’s definition of continuous functions
on deterministic sequences to sequence of random variables. More precisely, it states that for
any sequence of random variables (Xn, n ≥ 1) and random variable X all defined on the same

probability space (ω,F ,P) such that Xn
d→ X. Then, for any continuous function on Xn, the

convergence g(Xn)
d→ g(X) is true as well. It also holds for convergence in distribution and almost

sure convergence.
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