Homework 10

Exercise 1*. Let $\left(X_{n}, n \geq 1\right)$ be a sequence of i.i.d. $\mathcal{E}(\lambda)$ random variables defined on a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$, i.e., X_{1} admits the following pdf:

$$
p_{X_{1}}(x)= \begin{cases}\lambda \exp (-\lambda x) & x \geq 0 \\ 0 & x<0\end{cases}
$$

Let also $S_{n}=X_{1}+\ldots+X_{n}$. Using the large deviations principle, find a tight upper bound on

$$
\mathbb{P}\left(\left\{S_{n} \geq n t\right\}\right) \quad \text { for } t>\mathbb{E}\left(X_{1}\right)=\frac{1}{\lambda}
$$

Exercise 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, X be an integrable random variable defined on this space and let \mathcal{G} be a sub- σ-field of \mathcal{F}. Relying only on the definition of conditional expectation, show the following properties:
a) $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}(X)$.
b) If X is independent of \mathcal{G}, then $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E}(X)$ a.s.
c) If X is \mathcal{G}-measurable, then $\mathbb{E}(X \mid \mathcal{G})=X$ a.s.
d) If Y is \mathcal{G}-measurable and bounded, then $\mathbb{E}(X Y \mid \mathcal{G})=\mathbb{E}(X \mid \mathcal{G}) Y$ a.s.
e) If \mathcal{H} is a sub- σ-field of \mathcal{G}, then $\mathbb{E}(\mathbb{E}(X \mid \mathcal{H}) \mid \mathcal{G})=\mathbb{E}(X \mid \mathcal{H})=\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H})$ a.s.

Hint for parts b) to e): According to the course definition, in order to check that some candidate random variable Z is the conditional expectation of X given \mathcal{G}, you should check the following two conditions:
(i) Z is \mathcal{G}-measurable;
(ii) Z satisfies $\mathbb{E}((Z-X) U)=0$ for every $U \mathcal{G}$-measurable and bounded.

Exercise 3. Let X, Y be two discrete random variables (with values in a countable set C). Let us moreover assume that X is integrable.
a) Show that the random variable $\psi(Y)$, where ψ is defined as

$$
\psi(y)=\sum_{x \in C} x \mathbb{P}(\{X=x\} \mid\{Y=y\})
$$

matches the definition of conditional expectation $\mathbb{E}(X \mid Y)$ given in the lectures.
b) Application: One rolls two independent and balanced dice (say Y and Z), each with four faces. What is the conditional expectation of the maximum of the two, given the value of one of them?

Exercise 4. Let X be a random variable such that $\mathbb{P}(\{X=+1\})=\mathbb{P}(\{X=-1\})=\frac{1}{2}$ and $Z \sim \mathcal{N}(0,1)$ be independent of X. Let also $a>0$ and $Y=a X+Z$. We propose below four possible estimators of the variable X given the noisy observation Y :

$$
\widehat{X}_{1}=\frac{Y}{a} \quad \widehat{X}_{2}=\frac{a Y}{a^{2}+1} \quad \widehat{X}_{3}=\operatorname{sign}(a Y) \quad \widehat{X}_{4}=\tanh (a Y)
$$

a) Which estimator among these four minimizes the mean square error (MSE) $\mathbb{E}\left((\widehat{X}-X)^{2}\right)$?

In order to answer the question, draw on the same graph the four curves representing the MSE as a function of $a>0$. For this, you may use either the exact mathematical expression of the MSE or the one obtained via Monte-Carlo simulations.
b) Provide a theoretical justification for your conclusion.
c) For which of the four estimators above does it hold that $\mathbb{E}\left((\widehat{X}-X)^{2}\right)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}\left(\widehat{X}^{2}\right)$?

