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Exercise 1. a) We must check that E(¢(Y) g(Y)) = E(X g(Y)) for any continuous and bounded
function g. The computation gives indeed:

E(3( = ¥y PU{Y =y}) = Y wg(y) PUX =2,V =y}) = E(X g(Y))
yel z,ycC
b) Let Y and Z be the two independent dice rolls: P{Y = i}) = P{Z = j}) = 0.25 and
PHY =i, Z =j}) =P{Y =i}) P({Z = j}). We therefore have E(max(Y, Z)|Y) = (YY), where

P({max(Y, 2) = j,Y = i})
P({Y = i})

v(i) = Zmax (i,j)) P({max(Y, Z) = j}{Y =}) = Zmax (4,7)

_ iP({st:m ~ P(Z=4Y —z}) oSS B
- Py =i} +j§1‘7 Py =i rdZ=d) j;ljp({Z—J})

So (1) = 2.5, ¥(2) = 2.75, 1(3) = 3.25 and 1h(4) =

Exercise 2.

a) From the previous Exercise,

= SORB((Z = KN =np) = Sk () )= =
k>0 E>1

and so E(Z|N) = pN. We also have that

E(Z) = E(E(Z|N)) = E(pN) = pA.

b) We have that

PUN =k Z=2) __ (Ord R @),
{Z=2}) Somss (T)pPqm (A fmb)e> (k- 2)!

P({N = k}|{Z = 2}) =

From the previous Exercise,

n A)k—= B
=Y kPN =k}|{Z = z}) —Zkgz_)z)!e P =2+ g\

k>0 K>z
and so E(N|Z) = Z + g\

¢) Intuitively, we would like each zombie to produce less than one offspring, so the infestation will
die down if pA < 1. However, even if this condition is met, we will also need \ to be small (relative
to the population of the planet). Otherwise, we risk having a few very hungry zombies eating the
brains of some significant percentage of world’s population before disappearing themselves.



Exercise 3. a) Let us compute theoretically the first three MSE’s:

]E(()?l 7X)2) _E (<X+§X)2> _ E(ZQ) 1

a? a?

2 2 2
~ a*X +aZ 1 a
E(Xo— X)) =E||——Z-X =E|(- X Z
(1%~ X)) (( - )) (( Fri Xt ))
1 a? 1

(a2 41)2 + (a2 +1)2 T a2 +1
E((X3 — X)?) = E((sign(a’X + aZ) — X)?) = 4Q(—]al)

where Q(z) = [*__pz(2)dz is the cdf of Z ~ N(0,1). The fourth MSE is given by

E((X; — X)?) = E((tanh(a’X + aZ) — X)?) = 1 — E(tanh(a® + aZ)?)
(see computation below in part ¢) for the last equality). This expression can be computed by

numerical integration or by the Monte-Carlo method, as suggested in the problem set. The four
MSE’s are represented as functions of a on the figure below:

This shows that the fourth estimator gives the minimum MSE.

b) As we shall see below, the fourth estimator corresponds to the conditional expectation E(X|Y),
which by definition minimizes E((Z—X)?) among all random variables Z which are o (Y )-measurable
and square-integrable. The computation of the condition expectation gives E(X|Y) = ¢(Y'), where

vy = > G Papz(y—az) pz(y—a)—pzly+a) e —e®

= — = tanh(ay)
ze{—1,+1} py(y) pz(y—a)+pz(y+a) eW+e W

which confirms that E(X|Y) = tanh(aY) = X;.

NB: The first expression for the function 1 (y) above can be obtained either by reasoning intuitively
(and forgetting that we are dealing here with a mix of discrete (X) and continuous (Y') random
variables), or by proving formally that the random variable ¢ (Y') satisfies (similarly to Ex. 2.a):

E(Xg(Y)) =E@(Y)g(Y)), forevery g:R — R continuous and bounded



¢) Using the following series of equalities:
E((E(X]Y) - X)?) = E(X?) + E(E(X]Y)?) — 2E(XE(X|Y))
%)+ E(E(X]Y)?) - 2E(E(XE(X|Y)]Y))
%) +E(E(X|Y)?) - 2E(E(X]Y)?) = E(X?) ~ E(E(X[Y)?)
we see that
E((Xs — X)?) = E(X?) - E(X}) =1 — E(tanh(aY)?) = 1 — E(tanh(a® + aZ)?)

(noticing for the last equality that the value of X can be replaced by +1 using symmetry) A direct
computation shows that it also holds that E((X; — X)?) = E(X?) — E(XQ) = but that the

equality does not hold for X 1 and X3.

2+1 ’

Exercise 4.

a) We know that M, 11 — M,, > 0 a.s., for all n > 0, and since M is a martingale, we also know
that E(Mp4+1 — My) =0 for all n > 0, so My,41 = M, a.s. for all n > 0, i.e. M, = M a.s. for all
n > 0.

b) Let us compute, for n > 0,

E((Mpy1 — Mp)?) = E(M2 —2My My, + M2) = E(E(M?2, | — 2My, 41 M, + M2|F,))
E(E(M; 1| Fn) — 2E(Myia|Fn) My + M7) = E(M? — 2M7 + M) =0

where we have used the assumption that E(M2|F,) = M2. Therefore, M,, = M a.s. for alln > 0.



