Advanced Probability and Applications

Solutions to Homework 12

Exercise 1. a) By Jensen's inequality, we know that

$$\mathbb{E}(\varphi(M_{n+1})|\mathcal{F}_n) \ge \varphi(\mathbb{E}(M_{n+1}|\mathcal{F}_n))$$

We also know that $\mathbb{E}(M_{n+1}|\mathcal{F}_n) \geq X_n$, since $(M_n, n \in \mathbb{N})$ is a submartingale. The function φ needs therefore to be also increasing in order to ensure that

$$\mathbb{E}(\varphi(M_{n+1})|\mathcal{F}_n) \ge \varphi(M_n)$$

b) In particular, $(M_n^2, n \ge 1)$ need not be a submartingale, whereas $(\exp(M_n), n \ge 1)$ always is.

c) For every $n \in \mathbb{N}$, S_n^2 is bounded and \mathcal{F}_n -measurable, and

$$\mathbb{E}(S_{n+1}^2 \mid \mathcal{F}_n) = \mathbb{E}(S_n^2 + 2S_n X_{n+1} + X_{n+1}^2 \mid \mathcal{F}_n)$$

= $S_n^2 + 2S_n \mathbb{E}(X_{n+1}) + \mathbb{E}(X_{n+1}^2) = S_n^2 + 1$

so we should take c = 1.

d) For every $n \in \mathbb{N}$, $\exp(S_n)/c^n$ is bounded and \mathcal{F}_n -measurable. Let us then compute

$$\mathbb{E}(\exp(S_{n+1}) \mid \mathcal{F}_n) = \mathbb{E}(\exp(S_n + X_{n+1}) \mid \mathcal{F}_n) = \exp(S_n) \mathbb{E}(\exp(X_{n+1}))$$
$$= \exp(S_n) \frac{e^{+1} + e^{-1}}{2} = \exp(S_n) \cosh(1)$$

so we should take $c = \cosh(1)$.

e) The answer is no. Indeed, we have:

$$\mathbb{E}(S_{n+1}^2 | \mathcal{F}_n) = \mathbb{E}((S_n + X_{n+1})^2 | \mathcal{F}_n) = S_n^2 + 2S_n \mathbb{E}(X_{n+1}) + \mathbb{E}(X_{n+1}^2) = S_n^2 + 2(2p-1)S_n + 1$$

and there is no way to make the middle term disappear by considering $S_n^2 - cn$ with c > 0 instead of S_n^2 .

f) In this case, the answer is yes:

$$\mathbb{E}(\exp(S_{n+1}) \mid \mathcal{F}_n) = \mathbb{E}(\exp(S_n + X_{n+1}) \mid \mathcal{F}_n) = \exp(S_n) \mathbb{E}(\exp(X_{n+1}))$$
$$= \exp(S_n) \left(p e^{+1} + (1-p) e^{-1}\right)$$

Taking therefore $c = p e^{+1} + (1 - p) e^{-1}$, we obtain what we want.

Exercise 2^{*}. a) To be added.

b) To be added

Exercise 3. Let $m \in \mathbb{N}$ and U be an \mathcal{F}_m -measurable and bounded random variable. Let us also define

$$H_n = \begin{cases} U, & \text{if } n = m + 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then $(H_n, n \in \mathbb{N})$ is predictable and for m < N, we have by assumption that M_m is \mathcal{F}_m -measurable and also that

$$0 = \mathbb{E}((H \cdot M)_N) = \mathbb{E}(U(M_{m+1} - M_m)).$$

Therefore, $M_m = \mathbb{E}(M_{m+1}|\mathcal{F}_m)$, so $(M_n, n \in \mathbb{N})$ is a martingale.

Exercise 4. For all $n \ge 0$, we have

$$\mathbb{E}(M_{n+1}^2 - \mathbb{E}(M_{n+1}^2)|\mathcal{F}_n) = \mathbb{E}((M_n + X_{n+1})^2|\mathcal{F}_n) - \mathbb{E}((M_n + X_{n+1})^2)$$

= $M_n^2 - 2M_n \mathbb{E}(X_{n+1}) + \mathbb{E}(X_{n+1}^2) - \mathbb{E}(M_n^2) - 2\mathbb{E}(M_n X_{n+1}) - \mathbb{E}(X_{n+1}^2) = M_n^2 - \mathbb{E}(M_n^2)$

as $\mathbb{E}(M_n X_{n+1}) = \mathbb{E}(M_n) \mathbb{E}(X_{n+1}) = 0.$