Homework 12

Exercise 1. Let $\left(M_{n}, n \in \mathbb{N}\right)$ be a submartingale with respect to a filtration $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ and $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a Borel-measurable and convex function such that $\mathbb{E}\left(\left|\varphi\left(M_{n}\right)\right|\right)<+\infty, \forall n \in \mathbb{N}$.
a) What additional property of φ ensures that the process $\left(\varphi\left(M_{n}\right), n \in \mathbb{N}\right)$ is also a submartingale?
b) In particular, which of the following two processes is ensured to be a submartingale: $\left(M_{n}^{2}, n \in \mathbb{N}\right)$ and/or $\left(\exp \left(M_{n}\right), n \in \mathbb{N}\right)$?

Let $\left(X_{n}, n \geq 1\right)$ be a sequence of i.i.d. random variables such $\mathbb{P}\left(\left\{X_{1}=+1\right\}\right)=\mathbb{P}\left(\left\{X_{1}=-1\right\}\right)=\frac{1}{2}$; let $S_{0}=0$ and $S_{n}=X_{1}+\ldots+X_{n}$ for $n \geq 1$; finally, let $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ for $n \geq 1$.
c) For which value of $c>0$ is the process $\left(S_{n}^{2}-c n, n \in \mathbb{N}\right)$ is a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$?
d) For which value of $c>0$ is the process $\left(\frac{\exp \left(S_{n}\right)}{c^{n}}, n \in \mathbb{N}\right)$ a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$?

Assume now that $\mathbb{P}\left(\left\{X_{1}=+1\right\}\right)=p=1-\mathbb{P}\left(\left\{X_{1}=-1\right\}\right)$ for some $0<p<1$ with $p \neq \frac{1}{2}$.
e) Does there exist a number $c>0$ such that the process $\left(S_{n}^{2}-c n, n \in \mathbb{N}\right)$ is a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$? If yes, compute the value of c; otherwise, justify why it is not the case.
f) Does there exist a number $c>0$ such that the process $\left(\frac{\exp \left(S_{n}\right)}{c^{n}}, n \in \mathbb{N}\right)$ is a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$? If yes, compute the value of c; otherwise, justify why it is not the case.

Exercise 2*. A bag contains red and blue balls with initially r red and b blue where $r b>0$. A ball is drawn from the bag, its colour noted, and the it is returned to the bag together with a new ball of the same color. Let R_{n} be the number of red balls after n such operations.
a) Show that $Y_{n}=\frac{R_{n}}{n+r+b}$ is a martingale with respect to the natural filtration $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$.
b) Define a stopping time

$$
T=\inf \{n \geq 1: \text { there are } m \text { red balls or there are } m \text { blue balls in the bag }\}
$$

for some $m>\max \{r, b\}$. What is the expectation of Y_{T} ?

Exercise 3. (If one cannot win on a game, then it is a martingale)
Let $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ be a filtration and $\left(M_{n}, n \in \mathbb{N}\right)$ be a process adapted to ($\mathcal{F}_{n}, n \in \mathbb{N}$) such that $\mathbb{E}\left(\left|M_{n}\right|\right)<\infty$, for all $n \in \mathbb{N}$.

Show that if for any predictable process $\left(H_{n}, n \in \mathbb{N}\right)$ such that H_{n} is a bounded random variable $\forall n \in \mathbb{N}$, we have

$$
\mathbb{E}\left((H \cdot M)_{N}\right)=0, \quad \forall N \in \mathbb{N}
$$

then $\left(M_{n}, n \in \mathbb{N}\right)$ is a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$.

Exercise 4. Let ($X_{n}, n \geq 1$) be a family of independent square-integrable random variables such that $\mathbb{E}\left(X_{n}\right)=0$ for all $n \geq 1$. Let $M_{0}=0, M_{n}=X_{1}+\ldots+X_{n}, n \geq 1$.

The process $\left(M_{n}, n \in \mathbb{N}\right)$ is a martingale, but it is also a process with independent increments. Show that $\left(M_{n}^{2}-\mathbb{E}\left(M_{n}^{2}\right), n \in \mathbb{N}\right)$ is also a martingale (hence the process A in the Doob decomposition of the submartingale $\left(M_{n}^{2}, n \in \mathbb{N}\right)$ is a deterministic process in this case).

