Advanced Probability and Applications

Homework 12

Exercise 1. Let $(M_n, n \in \mathbb{N})$ be a submartingale with respect to a filtration $(\mathcal{F}_n, n \in \mathbb{N})$ and $\varphi : \mathbb{R} \to \mathbb{R}$ be a Borel-measurable and convex function such that $\mathbb{E}(|\varphi(M_n)|) < +\infty, \forall n \in \mathbb{N}$.

a) What additional property of φ ensures that the process $(\varphi(M_n), n \in \mathbb{N})$ is also a submartingale?

b) In particular, which of the following two processes is ensured to be a submartingale: $(M_n^2, n \in \mathbb{N})$ and/or $(\exp(M_n), n \in \mathbb{N})$?

Let $(X_n, n \ge 1)$ be a sequence of i.i.d. random variables such $\mathbb{P}(\{X_1 = +1\}) = \mathbb{P}(\{X_1 = -1\}) = \frac{1}{2};$ let $S_0 = 0$ and $S_n = X_1 + \ldots + X_n$ for $n \ge 1$; finally, let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ for $n \ge 1$.

c) For which value of c > 0 is the process $(S_n^2 - cn, n \in \mathbb{N})$ is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$?

d) For which value of c > 0 is the process $\left(\frac{\exp(S_n)}{c^n}, n \in \mathbb{N}\right)$ a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$?

Assume now that $\mathbb{P}(\{X_1 = +1\}) = p = 1 - \mathbb{P}(\{X_1 = -1\})$ for some $0 with <math>p \neq \frac{1}{2}$.

e) Does there exist a number c > 0 such that the process $(S_n^2 - cn, n \in \mathbb{N})$ is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$? If yes, compute the value of c; otherwise, justify why it is not the case.

f) Does there exist a number c > 0 such that the process $\left(\frac{\exp(S_n)}{c^n}, n \in \mathbb{N}\right)$ is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$? If yes, compute the value of c; otherwise, justify why it is not the case.

Exercise 2*. A bag contains red and blue balls with initially r red and b blue where rb > 0. A ball is drawn from the bag, its colour noted, and the it is returned to the bag together with a new ball of the same color. Let R_n be the number of red balls after n such operations.

a) Show that $Y_n = \frac{R_n}{n+r+b}$ is a martingale with respect to the natural filtration $(\mathcal{F}_n, n \in \mathbb{N})$.

b) Define a stopping time

 $T = \inf\{n \ge 1: \text{ there are } m \text{ red balls or there are } m \text{ blue balls in the bag}\},\$

for some $m > \max\{r, b\}$. What is the expectation of Y_T ?

Exercise 3. (If one cannot win on a game, then it is a martingale) Let $(\mathcal{F}_n, n \in \mathbb{N})$ be a filtration and $(M_n, n \in \mathbb{N})$ be a process adapted to $(\mathcal{F}_n, n \in \mathbb{N})$ such that $\mathbb{E}(|M_n|) < \infty$, for all $n \in \mathbb{N}$.

Show that if for any predictable process $(H_n, n \in \mathbb{N})$ such that H_n is a bounded random variable $\forall n \in \mathbb{N}$, we have

$$\mathbb{E}((H \cdot M)_N) = 0, \quad \forall N \in \mathbb{N}.$$

then $(M_n, n \in \mathbb{N})$ is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.

Exercise 4. Let $(X_n, n \ge 1)$ be a family of independent square-integrable random variables such that $\mathbb{E}(X_n) = 0$ for all $n \ge 1$. Let $M_0 = 0$, $M_n = X_1 + \ldots + X_n$, $n \ge 1$.

The process $(M_n, n \in \mathbb{N})$ is a martingale, but it is also a process with independent increments. Show that $(M_n^2 - \mathbb{E}(M_n^2), n \in \mathbb{N})$ is also a martingale (hence the process A in the Doob decomposition of the submartingale $(M_n^2, n \in \mathbb{N})$ is a deterministic process in this case).