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Exercise 1. We use the large deviations principle to find a tight upper bound. Before this, we
need to check that the moment generating function E(esX1) is finite in a proper neighborhood of
s = 0:

E(esX1) =

∫ ∞

0
esx λe−λx dx =

λ

λ− s
, for s < λ

Therefore, by applying the large deviations principle, we obtain for t > 1/λ:

P({Sn > nt}) ≤ exp(−nΛ∗(t)) where Λ∗(t) = max
s∈R

{
st− log

(
λ

λ− s

)}
By taking the derivative of st− log

(
λ

λ−s

)
with respect to s and setting it equal to zero, we obtain

that Λ∗(t) is maximum at s∗ = λ− 1
t . Hence,

P({Sn > nt}) ≤ exp(−n (λt− 1− log(λt)))

Exercise 2.*

R a) For X ∼ N (0, σ2) we have

MX(t) = E(etX) =
1√
2πσ2

∫ +∞

−∞
etxe−

x2

2σ2 dx

=
1√
2πσ2

e
t2σ2

2

∫ +∞

−∞
e−

(x−σ2t)2

2σ2 dx

= exp

(
t2σ2

2

)
.

b) For X ∼ U([−a, a]) we have

MX(t) = E(etX) =

∫ a

−a

1

2a
etx dx =

1

2at
(eta − e−ta).

Now note that, using the Taylor expansion of ex given in the hint, we can write

eta − e−ta =

∞∑
n=0

(ta)n

n!
−

∞∑
n=0

(−ta)n

n!

=
∞∑
n=0

(ta)2n+1

(2n+ 1)!

≤ ta

∞∑
n=0

(t2a2)n

2nn!

= ta exp

(
t2a2

2

)

1



where the inequality is due to the fact that (2n + 1)! ≥ 2nn!, and the last equality is due to the

Taylor expansion of exp
(
t2a2

2

)
. Hence, we conclude that

MX(t) ≤ 1

2
exp

(
t2a2

2

)
≤ exp

(
t2a2

2

)
.

c) By the Chebyshev-Markov inequality with ψ(x) = esx, we have

P(X ≥ t) ≤ E(esX)

est
≤ exp

(
s2η2

2
− st

)
.

The optimal s (which can be found by taking the derivative of the right-hand side and putting it
equal to 0) is s = t

η2
, which we can substitute into the equation to get

P(X ≥ t) ≤ exp

(
t2

2η2

)
.

The same upper-bound can be obtained similarly for P(X ≤ −t), proving the result.

d) Note that, if Y1 and Y2 are two independent sub-gaussian random variables for some η1 and η2,
then Y1 + Y2 is sub-gaussian with η2 = η21 + η22. In fact,

MY1+Y2(t) = E(et(Y1+Y2)) = E(etY1)E(etY2) ≤ exp

(
t2(η21 + η22)

2

)
.

One can apply this result recursively to prove the same property for the sum of n independent ran-
dom variables. Then, the required result follows directly from part 3 with X =

∑n
i=1(Xi −E(Xi)).

Exercise 3. a) Use part (ii) of the definition with U ≡ 1 (such a U belongs to G).

b) (i) Z = E(X) is constant and therefore G-measurable; (ii) Let U ∈ G: E(XU) = E(X)E(U) =
E(E(X)U) = E(ZU) (using the independence of X and U and the linearity of expectation).

c) (i) Z = X is G-measurable by assumption; (ii) Let U ∈ G: E(XU) = E(ZU) !

d) (i) Z = E(X|G)Y is G-measurable; (ii) Let U ∈ G: E(XY U) = E(E(X|G)Y U), because
part (ii) of the definition of E(X|G) implies the previous equality (indeed, Y U ∈ G). Therefore,
E(XY U) = E(ZU).

e) Let us first check the left-hand side equality: E(X|H) is H-measurable, therefore G-measurable,
so one can apply property c).

For the right-hand side equality, one has: (i) Z = E(X|H) is H-measurable; (ii) Let U ∈ H:

E(E(X|G)U) = E(E(XU |G)) = E(XU) = E(E(X|H)U) = E(ZU)

using successively d), a) and the definition of E(X|H).
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