
Advanced Probability and Applications EPFL - Fall Semester 2024-2025

Solutions to Homework 14

Exercise 1.*
a). First, lets show that if function f : X n → R has c-bounded differences, it satisfies 1− Lipschitz
condition.

i.e., Let x, y ∈ Yn be such that they differ at the j− th (j ≤ n) position. Then, we have

|f(x)− f(y)| ≤ cj = dc(x, y)

Now, lets extend it to x, z ∈ Yn such that x and z differ at exactly two positions, say i− th and
j− th index. Then, there exist a y ∈ Yn such that it differs, from both x and z, only at 1 position.
Then, we have

|f(x)− f(y)| ≤ ci

|f(y)− f(z)| ≤ cj

On adding both the equations and using triangle inequality, we have

|f(x)− f(z)| ≤ |f(x)− f(y)|+ |f(y)− f(z)| ≤ ci + cj = dc(x, z).

A further extension is possible for any two vectors which differ at at most n positions. Further,
note that proving the converse i.e., 1− Lipschitz implies c-bounded differences, is not that hard..

b). Note that if x ∈ Yn, then the minimizer y = x. Thus, dc(x, x) = 0 and consequently,
g(x) = f(x). For the case, when x /∈ Yn, we have

g(x) ≤ inf
y∈Yn

f(y) + sup
y∈Yn

dc(x, y)

= inf
y∈Yn

f(y) +
n∑

i=1

ci

≤ E(f(X)|X ∈ Yn) + c̄

Therefore,

g(X) ≤

{
f(X) if X ∈ Yn

E[f(X)|X ∈ Yn] + c̄ if X ̸∈ Yn

c). We know the following:

E(g(X)) = E(g(X)|X ∈ Yn)P(X ∈ Yn) + E(g(X)|X /∈ Yn)P(X /∈ Yn) (1)

Using the result from part b)., we have:

if X ∈ Yn ; g(X) = f(X) =⇒ E(g(X)|X ∈ Yn) = E(f(X)|X ∈ Yn)

if X /∈ Yn ; g(X) ≤ E(f(X)|X ∈ Yn) + c̄ =⇒ E(g(X)|X /∈ Yn) ≤ E(f(X)|X ∈ Yn) + c̄.
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Going back to Eq. (1), we have that:

E(g(X)) ≤ E(f(X)|X ∈ Yn)P(X ∈ Yn) + (E(f(X)|X ∈ Yn) + c̄)P(X /∈ Yn)

= E((f(X)|X ∈ Yn) + pc̄

d). Let’s begin with

P[
(
f(X)− E[f(X)|X ∈ Yn]

)
≥ ϵ+ pc̄] ≤ P(f(X)− E(g(X)) ≥ ϵ)

≤ P(f(X)− E(g(X)) ≥ ϵ|X ∈ Yn)P(X ∈ Yn) + P(X /∈ Yn)

≤ P(g(X)− E(g(X)) ≥ ϵ) + p

≤ exp

(
− ϵ2∑n

i=1 c
2
i

)
+ p

Hence, proved.

Exercise 2.
a) Observe first that for every value of 0 < p < 1, we have 0 < Mn+1 < 1 whenever 0 < Mn < 1
(and M0 = x ∈ ]0, 1[ by assumption), so that it makes sense to consider both Mn and 1 −Mn as
probabilities at every step. Let us then compute:

E(Mn+1 | Fn) = pMn (1−Mn) + ((1− p) + pMn)Mn = Mn

for every 0 < p < 1 !

b) Again, let us compute:

E(Mn+1 (1−Mn+1) | Fn) = pMn (1− pMn) (1−Mn) + ((1− p) + pMn) (1− (1− p)− pMn)Mn

= pMn (1− pMn) (1−Mn) + ((1− p) + pMn) p(1−Mn)Mn = p(2− p)Mn (1−Mn)

c) Therefore, we obtain by induction:

E(Mn (1−Mn)) = (p(2− p))n x(1− x)

which converges to 0 as n gets large (as p(2− p) < 1 for every 0 < p < 1).

d) Because the martingale M is bounded, the answer is yes to all three questions.

e) The answer obtained in c) suggests that Mn converges either to 0 or 1 as n → ∞, which turns
out to be the case. Moreover, as seen in class:

P({M∞ = 1}) = E(M∞) = E(M0) = x, so P({M∞ = 0}) = 1− x

Exercise 3.

a) As 0 < p < 1/2, S is a supermartingale. Also, λx = ex log(λ) is a convex function ∀λ > 0, but is
increasing for λ ≥ 1 and decreasing for λ ≤ 1. Therefore, applying Jensen’s inequality gives

E(λSn+1 | Fn) ≥ λE(Sn+1 | Fn) ≥ λSn
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only when λ ≤ 1.

b) We have

E(λSn+1 | Fn) = λSn E(λXn+1) = λSn (λp+
1

λ
(1− p))

which says that Y is a submartingale if and only if E = λp+ 1
λ(1−p) ≥ 1. Solving this (quadratic)

inequation, we obtain the condition: λ ∈]−∞, 1]∪ [1−p
p ,+∞[. For the martingale condition to hold

(E = 1), it must be that either λ = 1 (trivial case) or λ = 1−p
p . Finally, Y is a supermartingale

(E ≤ 1) if and only if λ ∈ [1, 1−p
p ].

c) By independence, we have E(|Yn|) = E(Yn) =
∏n

j=1 E(λXj ) = (λp+ 1
λ(1− p))n and

E(Y 2
n ) =

n∏
j=1

E(λ2Xj ) = (λ2p+
1

λ2
(1− p))n

d) Using the analysis done in question b), we obtain that

sup
n∈N

E(|Yn|) < +∞ if and only if λp+
1

λ
(1− p) ≤ 1 if and only if λ ∈ [1,

1− p

p
]

Likewise,

sup
n∈N

E(Y 2
n ) < +∞ if and only if λ2p+

1

λ2
(1− p) ≤ 1 if and only if λ ∈ [1,

√
1− p

p
]

as we simply need to replace λ by λ2 here.
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