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Exercise 1.*
a). First, lets show that if function f : X™ — R has c-bounded differences, it satisfies 1— Lipschitz
condition.

i.e., Let x,y € V" be such that they differ at the j— th (j < n) position. Then, we have

[f (@) = Fy) < ¢j = de(,y)

Now, lets extend it to x,z € V" such that z and z differ at exactly two positions, say i— th and
j— th index. Then, there exist a y € Y™ such that it differs, from both x and z, only at 1 position.
Then, we have

On adding both the equations and using triangle inequality, we have

[f(@) = f) < [f(2) = FW +1f(y) = F(R)] < ci+ ¢ = de(a, 2).

A further extension is possible for any two vectors which differ at at most n positions. Further,
note that proving the converse i.e., 1— Lipschitz implies c-bounded differences, is not that hard..

b). Note that if x € Y™, then the minimizer y = x. Thus, d.(z,z) = 0 and consequently,
g(z) = f(x). For the case, when x ¢ )", we have

g(x) < inf f(y) + sup de(w,y)
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¢). We know the following:

E(9(X)) =E(g(X)[X € Y)P(X € V") + E(g(X)|X ¢ Y")P(X ¢ V") (1)

Using the result from part b)., we have:

if X e"; g(X) = f(X) = E(g(X)|X €Y") = E(f(X)[X € Y")
X ¢Y"; g(X) <E(f(X)X €eV)+¢ = E(g(X)|X V") <E(f(X)|[X €V")+¢



Going back to Eq. (1), we have that:

E(g(X)) < E(f(X)IX € YP(X € Y") + (E(f(X)|X € V") + OB(X ¢ V")
— E((f(X)|X € V") +pe

d). Let’s begin with

P{(f(X) —E[f(X)|X € Y"]) > e+ pe] <P(f(X) —E(g(X)) >¢)
<P(f(X)—E(g(X)) > el X e V" )P(X € V") +P(X ¢ V")
<P(g(X) —E(g(X)) =€) +p

Hence, proved.

Exercise 2.

a) Observe first that for every value of 0 < p < 1, we have 0 < M, 1 < 1 whenever 0 < M,, <1
(and My = x €]0, 1] by assumption), so that it makes sense to consider both M,, and 1 — M,, as
probabilities at every step. Let us then compute:

E(Mn+1|Fn) = pMy (1 — My) + (1 — p) + pMy) My, = My,
forevery 0 < p < 1!

b) Again, let us compute:

E(Mn-‘rl (1 - Mn—i—l) |Fn) = pMn (1 - pMn) (1 - Mn) + ((1 - p) +pMn) (1 - (1 - p) - pMn) Mn
= pMn (1 - pMn) (1 - Mn) + ((1 - p) +pMn)p(1 - Mn) Mn = p(2 _p) Mn (1 - Mn)

¢) Therefore, we obtain by induction:
E(My (1= My)) = (p(2—p))" x(1 - z)
which converges to 0 as n gets large (as p(2 —p) < 1 for every 0 < p < 1).

d) Because the martingale M is bounded, the answer is yes to all three questions.

e) The answer obtained in c¢) suggests that M,, converges either to 0 or 1 as n — oo, which turns
out to be the case. Moreover, as seen in class:

P({My = 1}) = E(Mx) = E(My) =2, so P({Mo =0})=1—12

Exercise 3.

a) As 0 < p < 1/2, S is a supermartingale. Also, \* = e* log(A) ig a convex function VA > 0, but is
increasing for A > 1 and decreasing for A < 1. Therefore, applying Jensen’s inequality gives

]E()\Sn+1 | Fn) > AE(Sn+1]Fn) > \5n



only when A < 1.

b) We have
1
E(A 1 | F,) = ASmE(A 1) = A5 (Ap + 1(1-7)
which says that Y is a submartingale if and only if E = Ap+ %(1 —p) > 1. Solving this (quadratic)
inequation, we obtain the condition: A €] —o0,1]U [%’ +oo[. For the martingale condition to hold

(E = 1), it must be that either A = 1 (trivial case) or A = 1].%”. Finally, Y is a supermartingale
(E <1) if and only if X € [1, 1%].

¢) By independence, we have E(|Y,|) = E(Y,) = [[}—, E(AY7) = (Ap+ 1(1 —p))" and

. AZX )\2 1 1 n

d) Using the analysis done in question b), we obtain that

1
supE(]Y,]) < +oo if and only if Ap+ X(l —p) <1 ifandonlyif Ae]l, —
neN

Likewise,

1—
supE(Y;?) < 400 if and only if \*p + )\2(1 —p) <1 ifandonlyif AXell,4/ J]
neN p

as we simply need to replace A by A? here.



