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Exercise 1*. a) Observe first that for every value of 0 < p < 1, we have 0 < M, 41 < 1 whenever
0< M, <1 (and My =z €]0,1] by assumption), so that it makes sense to consider both M,, and
1 — M,, as probabilities at every step. Let us then compute:

E(Mp+1|Fn) = pM, (1 — M,) + (1 — p) + pM,,) M,, = M,
forevery 0 < p < 1!
b) Again, let us compute:

E(Mn+1 (1 - Mn+1) |fn) = pMn (1 - pMn) (1 - Mn) + ((1 - p) +pMn) (1 - (1 - p) - pMn) Mn
= pM, (1 - pMn) (1 - Mn) + ((1 - p) +pMn)p(1 - Mn) M, = p(2 _p) M, (1 - Mn)

¢) Therefore, we obtain by induction:
E(My (1 — My)) = (p(2 —p))" z(1 —x)
which converges to 0 as n gets large (as p(2 — p) < 1 for every 0 < p < 1).

d) Because the martingale M is bounded, the answer is yes to all three questions.

e) The answer obtained in ¢) suggests that M,, converges either to 0 or 1 as n — oo, which turns
out to be the case. Moreover, as seen in class:

P{My =1}) =E(Ms) =E(My) =2z, so P{Myx=0})=1-=x

Exercise 2.

Preliminary question. This question just requires a direct application of the generalized version
of Hoeffding’s inequality.
Part I.

a) As 0 < p < 1/2, S is a supermartingale. Also, \* = e* 10g(M) ig a convex function VA > 0, but is
increasing for A > 1 and decreasing for A < 1. Therefore, applying Jensen’s inequality gives

only when A < 1.

b) We have

E(ASw#1 | Fp) = XS0 (A1) = A5 (Ap + %(1 ~p))

which says that Y is a submartingale if and only if £ = Ap+ %(1 —p) > 1. Solving this (quadratic)

inequation, we obtain the condition: A €] — o0, 1]U [lp%p, +00[. For the martingale condition to hold

(E = 1), it must be that either A = 1 (trivial case) or A = lp%p. Finally, Y is a supermartingale

(E<1)ifandonlyif A € [1, 1%:0].



¢) By independence, we have E(|Y,|) = E(Y,) = [[}j_; E(AY7) = (Ap+ 1(1 —p))" and
< A2X )\2 1 1 n

d) Using the analysis done in question b), we obtain that

1 1-
supE(|Yy|) < +oc if and only if Ap+ (1 -p)<1 ifandonlyif A€ [l i
neN p
Likewise,
1=
supE(Y;?) < 400 if and only if \*p + /\2( —p) <1 ifandonlyif \e]l, Tp]
neN

as we simply need to replace A by A? here.

e) Numerically (see the code), we see clearly that ¥;, = 1 when A = 1 and that Y, T 0 a.s. for

all A > 1. Theoretically, this is due to the fact that S, -, —o0 as. (one can use Hoeffdlng s
n—oo

inequality to justify this fact), so that Y;, = A5 converges a.s. to 0 when X > 1 (even though Y is

a submartingale for \ > l;fp).

The martingale convergence theorem itself only allows to conclude that Y converges a.s. when
Ael, %], i.e., when the first condition in question d) is satisfied.

f) For the process Y to converge also in L? towards its limit, we need the second condition in part
d) to hold, i.e., A € [1,/ 1}%”] (indeed, if this condition is not met, then E(Y,?) diverges, so no L?

convergence can take place).

g) The only value of A for which the equality E(Yy|F,) = Y, is satisfied for all n € N is the
trivial case A = 1. For all the other values of A € [1, 4/ op ] Y is a supermartingale, which gives

E(Yoo|Fn) <Y, for all n € N. But in this case, we already know that Yo, = 0, so what the above
inequality is actually saying is that 0 <Y}, i.e., not much. ..

Part II. We consider the case A\ = 1%” (>1).

a) Method: observe first that 7, = inf{n € N : S, > a or S, < —a}. Run then M = 1000
times the process S for N = 1’000 time steps; count the number of times m the barrier a is reached
before —a (see the code for the implementation). The probability P = P({Yy, = A%}) is then
approximately given by m/M (there are of course fluctuations here).

b) It is true that E(Y7,) = E(Yy). The third version of the optional stopping theorem allows to say
this, as the martingale Y makes bounded jumps and is contained in the interval [A™% A?] before
the stopping time T,.

¢) As the martingale convergence theorem applies, we obtain

=EYy) =E(Y7,) =X*"P+X*(1-P)
SO
I—A Ax-1 1

P = — -
N—ATe A1 Nt
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This probability decays exponentially in a.

d) Method: Run again M = 1’000 times the process S for N = 1’000 time steps; count the number
of times m the barrier a is reached at all (see the code for the implementation). The probability
P" = P({Y7; = A%}) is then approximately given by m/M (there are of course also fluctuations
here).

e) It is also true that E(Y7r) = E(Yp)! The third version of the optional stopping theorem allows to
say this, as the martingale Y makes bounded jumps and is contained in the interval [0, \%] before
the stopping time 7T, (even though the process S itself is unbounded).

f) As the martingale convergence theorem applies, we obtain
1=E(Yo) =E(Yy) = AP 4+0(1-P)

[Comment: if level a is not reached, this is saying that the process S goes to —oo and never comes
back to level a; of course, this can only happen with positive probability when S is a (strict)
supermartingale with a negative drift.] Therefore,

1

P=_
)\a

which is strictly greater than P, but decays also exponentially in a.



