
Advanced Probability and Applications EPFL - Spring Semester 2023-2024

Solutions to Homework 14

Exercise 1*. a) Observe first that for every value of 0 < p < 1, we have 0 < Mn+1 < 1 whenever
0 < Mn < 1 (and M0 = x ∈ ]0, 1[ by assumption), so that it makes sense to consider both Mn and
1−Mn as probabilities at every step. Let us then compute:

E(Mn+1 | Fn) = pMn (1−Mn) + ((1− p) + pMn)Mn = Mn

for every 0 < p < 1 !

b) Again, let us compute:

E(Mn+1 (1−Mn+1) | Fn) = pMn (1− pMn) (1−Mn) + ((1− p) + pMn) (1− (1− p)− pMn)Mn

= pMn (1− pMn) (1−Mn) + ((1− p) + pMn) p(1−Mn)Mn = p(2− p)Mn (1−Mn)

c) Therefore, we obtain by induction:

E(Mn (1−Mn)) = (p(2− p))n x(1− x)

which converges to 0 as n gets large (as p(2− p) < 1 for every 0 < p < 1).

d) Because the martingale M is bounded, the answer is yes to all three questions.

e) The answer obtained in c) suggests that Mn converges either to 0 or 1 as n → ∞, which turns
out to be the case. Moreover, as seen in class:

P({M∞ = 1}) = E(M∞) = E(M0) = x, so P({M∞ = 0}) = 1− x

Exercise 2.

Preliminary question. This question just requires a direct application of the generalized version
of Hoeffding’s inequality.

Part I.

a) As 0 < p < 1/2, S is a supermartingale. Also, λx = ex log(λ) is a convex function ∀λ > 0, but is
increasing for λ ≥ 1 and decreasing for λ ≤ 1. Therefore, applying Jensen’s inequality gives

E(λSn+1 | Fn) ≥ λE(Sn+1 | Fn) ≥ λSn

only when λ ≤ 1.

b) We have

E(λSn+1 | Fn) = λSn E(λXn+1) = λSn (λp+
1

λ
(1− p))

which says that Y is a submartingale if and only if E = λp+ 1
λ(1−p) ≥ 1. Solving this (quadratic)

inequation, we obtain the condition: λ ∈]−∞, 1]∪ [1−p
p ,+∞[. For the martingale condition to hold

(E = 1), it must be that either λ = 1 (trivial case) or λ = 1−p
p . Finally, Y is a supermartingale

(E ≤ 1) if and only if λ ∈ [1, 1−p
p ].
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c) By independence, we have E(|Yn|) = E(Yn) =
∏n

j=1 E(λXj ) = (λp+ 1
λ(1− p))n and

E(Y 2
n ) =

n∏
j=1

E(λ2Xj ) = (λ2p+
1

λ2
(1− p))n

d) Using the analysis done in question b), we obtain that

sup
n∈N

E(|Yn|) < +∞ if and only if λp+
1

λ
(1− p) ≤ 1 if and only if λ ∈ [1,

1− p

p
]

Likewise,

sup
n∈N

E(Y 2
n ) < +∞ if and only if λ2p+

1

λ2
(1− p) ≤ 1 if and only if λ ∈ [1,

√
1− p

p
]

as we simply need to replace λ by λ2 here.

e) Numerically (see the code), we see clearly that Yn ≡ 1 when λ = 1 and that Yn →
n→∞

0 a.s. for

all λ > 1. Theoretically, this is due to the fact that Sn →
n→∞

−∞ a.s. (one can use Hoeffding’s

inequality to justify this fact), so that Yn = λSn converges a.s. to 0 when λ > 1 (even though Y is
a submartingale for λ > 1−p

p ).

The martingale convergence theorem itself only allows to conclude that Y converges a.s. when
λ ∈ [1, 1−p

p ], i.e., when the first condition in question d) is satisfied.

f) For the process Y to converge also in L2 towards its limit, we need the second condition in part

d) to hold, i.e., λ ∈ [1,
√

1−p
p ] (indeed, if this condition is not met, then E(Y 2

n ) diverges, so no L2

convergence can take place).

g) The only value of λ for which the equality E(Y∞|Fn) = Yn is satisfied for all n ∈ N is the

trivial case λ = 1. For all the other values of λ ∈ [1,
√

1−p
p ], Y is a supermartingale, which gives

E(Y∞|Fn) ≤ Yn for all n ∈ N. But in this case, we already know that Y∞ = 0, so what the above
inequality is actually saying is that 0 ≤ Yn, i.e., not much. . .

Part II. We consider the case λ = 1−p
p (> 1).

a) Method: observe first that Ta = inf{n ∈ N : Sn ≥ a or Sn ≤ −a}. Run then M = 1′000
times the process S for N = 1′000 time steps; count the number of times m the barrier a is reached
before −a (see the code for the implementation). The probability P = P({YTa = λa}) is then
approximately given by m/M (there are of course fluctuations here).

b) It is true that E(YTa) = E(Y0). The third version of the optional stopping theorem allows to say
this, as the martingale Y makes bounded jumps and is contained in the interval [λ−a, λa] before
the stopping time Ta.

c) As the martingale convergence theorem applies, we obtain

1 = E(Y0) = E(YTa) = λa P + λ−a (1− P )

so

P =
1− λ−a

λa − λ−a
=

λa − 1

λ2a − 1
=

1

λa + 1
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This probability decays exponentially in a.

d) Method: Run again M = 1′000 times the process S for N = 1′000 time steps; count the number
of times m the barrier a is reached at all (see the code for the implementation). The probability
P ′ = P({YT ′

a
= λa}) is then approximately given by m/M (there are of course also fluctuations

here).

e) It is also true that E(YT ′
a
) = E(Y0)! The third version of the optional stopping theorem allows to

say this, as the martingale Y makes bounded jumps and is contained in the interval [0, λa] before
the stopping time T ′

a (even though the process S itself is unbounded).

f) As the martingale convergence theorem applies, we obtain

1 = E(Y0) = E(YT ′
a
) = λa P ′ + 0 (1− P ′)

[Comment: if level a is not reached, this is saying that the process S goes to −∞ and never comes
back to level a; of course, this can only happen with positive probability when S is a (strict)
supermartingale with a negative drift.] Therefore,

P ′ =
1

λa

which is strictly greater than P , but decays also exponentially in a.
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