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Homework 14

Exercise 1.* A function f : X n → R has c-bounded differences (where c := (c1, c2, · · · , cn)) on
X n iff ∣∣f(x1, x2, · · · , xi, · · · , xn)− f(x1, x2, · · · , x′i, · · · , xn)

∣∣ ≤ ci

∀ (x1, x2, · · · , xi, · · · , xn), (x1, x2, · · · , x′i, · · · , xn) ∈ (X n)2. i.e., if the i − th entry of any input to
the function is modified, the function changes by at most ci. From now on, with slight abuse of
notation, we denote a vector (X1, · · · , Xn) as X ∈ X n.

Recall from the class that the McDiarmid’s Inequality tells us that if a function f has c-bounded
differences, then f(X) concentrates around its expected value E[f(X)].

In this question, we will explore the concentration of the function f(X), when it has c-bounded
differences, but only on subset Yn ⊂ X n. As a takeaway, we will see that for a function f(X) with
c-bounded differences on a high probability set, the function concentrates around its conditional
expectation i.e., E[f(X)|X ∈ Yn].

Theorem: Consider a function f : X n → R with c-bounded differences on Yn ⊂ X n, then for
every ϵ ≥ 0

P[
(
f(X)− E[f(X)|X ∈ Yn]

)
≥ ϵ+ pc̄] ≤ p+ exp

(
− ϵ2∑n

i=1 c
2
i

)
where c̄ =

∑n
i=1 ci and p = P[X ̸∈ Yn].

Let’s try to prove it now!

a). Show that the function f : X n → R has c-bounded differences over the subset Yn iff it is
1-Lipschitz over Yn with respect to the weighted hamming distance dc i.e.,

|f(x)− f(y)| ≤ dc(x, y) ∀ (x, y) ∈ (Yn)2

where

dc(x, y) =
n∑

i=1

ci1(xi ̸= yi)

Next, we define a Lipschitz extension of f i.e., function g (such that it is 1-Lipschitz over X with
respect to dc) as follows

g(x) = inf
y∈Yn

{f(y) + dc(x, y)}

for all x ∈ X n.

b). Show that the following hold for the function g(X) : X n → R:

g(X) ≤

{
f(X) if X ∈ Yn

E[f(X)|X ∈ Yn] + c̄ if X ̸∈ Yn
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c). How would you compute an upper bound on E[g(X)] from here?

d). Prove the above theorem, by using the results from the previous parts. Try to upper bound
P[f(X)− E[g(X)] ≥ ϵ]. Hint: You might want to use the law of total probability.

Exercise 2. Let 0 < p < 1 and M = (Mn, n ∈ N) be the process defined recursively as

M0 = x ∈ ]0, 1[, Mn+1 =


pMn, with probability 1−Mn

(1− p) + pMn, with probability Mn

and (Fn, n ∈ N) be the filtration defined as Fn = σ(M0, . . . ,Mn), n ∈ N.

a) For what value(s) of 0 < p < 1 is the process M is a martingale with respect to (Fn, n ∈ N)?
Justify your answer.

b) In the case(s) M is a martingale, compute E(Mn+1 (1−Mn+1) | Fn) for n ∈ N.

c) Deduce the value of E(Mn (1−Mn)) for n ∈ N.

d) Does there exist a random variable M∞ such that

(i) Mn →
n→∞

M∞ a.s. ? (ii) Mn
L2

→
n→∞

M∞ ? (iii) E(M∞|Fn) = Mn, ∀n ∈ N?

e) What can you say more about M∞? (No formal justification required here; an intuitive argument
will do.)

Exercise 3. Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables such that P({Xn = +1}) = p
and P({Xn = −1}) = 1− p for some fixed 0 < p < 1/2.

Let S0 = 0 and Sn = X1 + . . .+Xn, n ≥ 1. Let also F0 = {∅,Ω} and Fn = σ(X1, . . . , Xn), n ≥ 1.

Preliminary question. Deduce from Hoeffding’s inequality that for any 0 < p < 1/2,

P({|Sn − n (2p− 1)| ≥ nt}) ≤ 2 exp

(
−nt2

2

)
∀t > 0, n ≥ 1.

This inequality will be useful at some point in this exercise. Let now (Yn, n ∈ N) be the process
defined as Yn = λSn for some λ > 0 and n ∈ N.

a) Using Jensen’s inequality only, for what values of λ can you conclude that the process Y is a
submartingale with respect to (Fn, n ∈ N)?

b) Identify now the values of λ > 0 for which it holds that the process (Yn = λSn , n ∈ N) is a
martingale / submartingale / supermartingale with respect to (Fn, n ∈ N).

c) Compute E(|Yn|) and E(Y 2
n ) for every n ∈ N (and every λ > 0).

d) For what values of λ > 0 does it hold that supn∈N E(|Yn|) < +∞? supn∈N E(Y 2
n ) < +∞?

2


