Advanced Probability and Applications

Homework 14

Exercise 1.* A function $f : \mathcal{X}^n \to \mathbb{R}$ has *c*-bounded differences (where $c := (c_1, c_2, \cdots, c_n)$) on \mathcal{X}^n iff

$$\left|f(x_1, x_2, \cdots, x_i, \cdots, x_n) - f(x_1, x_2, \cdots, x'_i, \cdots, x_n)\right| \le c_i$$

 $\forall (x_1, x_2, \dots, x_i, \dots, x_n), (x_1, x_2, \dots, x'_i, \dots, x_n) \in (\mathcal{X}^n)^2$. i.e., if the i - th entry of any input to the function is modified, the function changes by at most c_i . From now on, with slight abuse of notation, we denote a vector (X_1, \dots, X_n) as $X \in \mathcal{X}^n$.

Recall from the class that the McDiarmid's Inequality tells us that if a function f has c-bounded differences, then f(X) concentrates around its expected value $\mathbb{E}[f(X)]$.

In this question, we will explore the concentration of the function f(X), when it has *c*-bounded differences, but only on subset $\mathcal{Y}^n \subset \mathcal{X}^n$. As a takeaway, we will see that for a function f(X) with *c*-bounded differences on a high probability set, the function concentrates around its conditional expectation i.e., $\mathbb{E}[f(X)|X \in \mathcal{Y}^n]$.

Theorem: Consider a function $f : \mathcal{X}^n \to \mathbb{R}$ with *c*-bounded differences on $\mathcal{Y}^n \subset \mathcal{X}^n$, then for every $\epsilon \geq 0$

$$\mathbb{P}[\left(f(X) - \mathbb{E}[f(X)|X \in \mathcal{Y}^n]\right) \ge \epsilon + p\bar{c}] \le p + \exp\left(-\frac{\epsilon^2}{\sum_{i=1}^n c_i^2}\right)$$

where $\bar{c} = \sum_{i=1}^{n} c_i$ and $p = \mathbb{P}[X \notin \mathcal{Y}^n]$.

Let's try to prove it now!

a). Show that the function $f : \mathcal{X}^n \to \mathbb{R}$ has c-bounded differences over the subset \mathcal{Y}^n iff it is 1-Lipschitz over \mathcal{Y}^n with respect to the weighted hamming distance d_c i.e.,

$$|f(x) - f(y)| \le d_c(x, y) \ \forall \ (x, y) \in (\mathcal{Y}^n)^2$$

where

$$d_c(x,y) = \sum_{i=1}^n c_i \mathbf{1}(x_i \neq y_i)$$

Next, we define a Lipschitz extension of f i.e., function g (such that it is 1-Lipschitz over \mathcal{X} with respect to d_c) as follows

$$g(x) = \inf_{y \in \mathcal{Y}^n} \{ f(y) + d_c(x, y) \}$$

for all $x \in \mathcal{X}^n$.

b). Show that the following hold for the function $g(X) : \mathcal{X}^n \to \mathbb{R}$:

$$g(X) \leq \begin{cases} f(X) & \text{if } X \in \mathcal{Y}^n \\ \mathbb{E}[f(X)|X \in \mathcal{Y}^n] + \bar{c} & \text{if } X \notin \mathcal{Y}^n \end{cases}$$

c). How would you compute an upper bound on $\mathbb{E}[g(X)]$ from here?

d). Prove the above theorem, by using the results from the previous parts. Try to upper bound $\mathbb{P}[f(X) - \mathbb{E}[g(X)] \ge \epsilon]$. *Hint: You might want to use the law of total probability.*

Exercise 2. Let $0 and <math>M = (M_n, n \in \mathbb{N})$ be the process defined recursively as

$$M_0 = x \in]0,1[, \quad M_{n+1} = \begin{cases} p M_n, & \text{with probability } 1 - M_n \\ (1-p) + p M_n, & \text{with probability } M_n \end{cases}$$

and $(\mathcal{F}_n, n \in \mathbb{N})$ be the filtration defined as $\mathcal{F}_n = \sigma(M_0, \ldots, M_n), n \in \mathbb{N}$.

a) For what value(s) of 0 is the process <math>M is a martingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$? Justify your answer.

- b) In the case(s) M is a martingale, compute $\mathbb{E}(M_{n+1}(1-M_{n+1}) | \mathcal{F}_n)$ for $n \in \mathbb{N}$.
- c) Deduce the value of $\mathbb{E}(M_n(1-M_n))$ for $n \in \mathbb{N}$.
- d) Does there exist a random variable M_{∞} such that
- (i) $M_n \xrightarrow[n \to \infty]{} M_\infty$ a.s. ? (ii) $M_n \xrightarrow[n \to \infty]{} M_\infty$? (iii) $\mathbb{E}(M_\infty | \mathcal{F}_n) = M_n, \forall n \in \mathbb{N}$?

e) What can you say more about M_{∞} ? (No formal justification required here; an intuitive argument will do.)

Exercise 3. Let $(X_n, n \ge 1)$ be a sequence of i.i.d. random variables such that $\mathbb{P}(\{X_n = +1\}) = p$ and $\mathbb{P}(\{X_n = -1\}) = 1 - p$ for some fixed 0 .

Let $S_0 = 0$ and $S_n = X_1 + \ldots + X_n$, $n \ge 1$. Let also $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, $n \ge 1$.

Preliminary question. Deduce from Hoeffding's inequality that for any 0 ,

$$\mathbb{P}(\{|S_n - n(2p - 1)| \ge nt\}) \le 2\exp\left(-\frac{nt^2}{2}\right) \quad \forall t > 0, \ n \ge 1.$$

This inequality will be useful at some point in this exercise. Let now $(Y_n, n \in \mathbb{N})$ be the process defined as $Y_n = \lambda^{S_n}$ for some $\lambda > 0$ and $n \in \mathbb{N}$.

a) Using Jensen's inequality only, for what values of λ can you conclude that the process Y is a submartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$?

b) Identify now the values of $\lambda > 0$ for which it holds that the process $(Y_n = \lambda^{S_n}, n \in \mathbb{N})$ is a martingale / submartingale / supermartingale with respect to $(\mathcal{F}_n, n \in \mathbb{N})$.

c) Compute $\mathbb{E}(|Y_n|)$ and $\mathbb{E}(Y_n^2)$ for every $n \in \mathbb{N}$ (and every $\lambda > 0$).

d) For what values of $\lambda > 0$ does it hold that $\sup_{n \in \mathbb{N}} \mathbb{E}(|Y_n|) < +\infty$? $\sup_{n \in \mathbb{N}} \mathbb{E}(Y_n^2) < +\infty$?