Solutions to Homework 13

Exercise 1*. a) No. H_{j} is \mathcal{F}_{j-1}-measurable, while X_{j} is independent of \mathcal{F}_{j}, so

$$
\mathbb{E}\left(H_{j} X_{j}\right)=\mathbb{E}\left(H_{j}\right) \mathbb{E}\left(X_{j}\right)=\mathbb{E}\left(H_{j}\right) 0=0
$$

b) We have

$$
\begin{aligned}
A_{n+1}-A_{n} & =\mathbb{E}\left(G_{n+1}^{2} \mid \mathcal{F}_{n}\right)-G_{n}^{2}=\mathbb{E}\left(\left(G_{n}+H_{n+1} X_{n+1}\right)^{2} \mid \mathcal{F}_{n}\right)-G_{n}^{2} \\
& =G_{n}^{2}+2 G_{n} H_{n+1} \mathbb{E}\left(X_{n+1}\right)+H_{n+1}^{2} \mathbb{E}\left(X_{n+1}^{2}\right)-G_{n}^{2}=H_{n+1}^{2}
\end{aligned}
$$

so $A_{0}=0$ and $A_{n}=\sum_{j=1}^{n} H_{j}^{2}$.
c) $H_{j}^{2}=1$ for all j, so $A_{n}=n$.
d) Here, the idea is to use the optional stopping theorem with the martingale ($G_{n}^{2}-n, n \in \mathbb{N}$), which gives

$$
\mathbb{E}\left(G_{T}^{2}-T\right)=\mathbb{E}\left(G_{0}^{2}-0\right)=0, \quad \text { so } \quad \mathbb{E}(T)=\mathbb{E}\left(G_{T}^{2}\right)=a^{2}
$$

Unfortunately, a full justification of the use of the theorem is impossible here using only the tools that you have learned in class, because the martingale $\left(G_{n}^{2}-n, n \in \mathbb{N}\right)$ is not bounded from below until the (unbounded) time T.
Exercise 2. a) Let $\left(\mathcal{F}_{n}, n \geq 1\right)$ denote natural filtration of $\left(X_{n}, n \in \mathbb{N}\right)$. Using the hint, we find

$$
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=p\left(X_{n}^{2}+1\right)+(1-p) \frac{X_{n}}{2} \geq 2 p X_{n}+(1-p) \frac{X_{n}}{2}=\frac{3 p+1}{2} X_{n} \geq X_{n}
$$

if $p \geq 1 / 3$. This condition turns out to be the minimal one. Indeed, it can always happen that X_{n} gets arbitrarily close to the value 1 . In this case,

$$
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=p\left(X_{n}^{2}+1\right)+(1-p) \frac{X_{n}}{2} \sim 2 p+\frac{1-p}{2}=\frac{3 p+1}{2}
$$

which is strictly less than 1 if $p<\frac{1}{3}$.
b) When $p \geq \frac{1}{3}$, we have

$$
\mathbb{E}\left(X_{n+1}\right)=\mathbb{E}\left(\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)\right) \geq \mathbb{E}\left(\frac{3 p+1}{2} X_{n}\right)=\frac{3 p+1}{2} \mathbb{E}\left(X_{n}\right)
$$

so

$$
\mathbb{E}\left(X_{n}\right) \geq\left(\frac{3 p+1}{2}\right)^{n} x
$$

c) No. The justification for this is the following: it can always happen that X_{n} follows the "down" path so as to get arbitrarily close to the value zero. In this case,

$$
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=p\left(X_{n}^{2}+1\right)+(1-p) \frac{X_{n}}{2} \sim p>X_{n}
$$

so the supermartingale property (and therefore also the martingale property) fails to hold, for any fixed value of $p>0$.

Exercise 3. a) Let us compute the function $\psi(m)=\mathbb{E}(|m+U|)=\frac{1}{2} \int_{-1}^{1}|m+u| d u$. If $m \geq 1$, then

$$
\psi(m)=\mathbb{E}(m+U)=m
$$

while if $0 \leq m<1$, then

$$
\psi(m)=\frac{1}{2}\left(\int_{-1}^{-m}(-m-u) d u+\int_{-m}^{+1}(m+u) d u\right)=\frac{1+m^{2}}{2}
$$

b) By what was computed in part a), we see that for $m \geq 0, \psi(m) \geq m$, so

$$
\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\left|M_{n}+U_{n+1}\right| \mid \mathcal{F}_{n}\right)=\psi\left(M_{n}\right) \geq M_{n}
$$

c)

$$
A_{n+1}-A_{n}=\mathbb{E}\left(M_{n+1}-M_{n} \mid \mathcal{F}_{n}\right)=\psi\left(M_{n}\right)-M_{n}= \begin{cases}0 & \text { if } M_{n} \geq 1 \\ \frac{1+M_{n}^{2}}{2}-M_{n}=\frac{\left(1-M_{n}\right)^{2}}{2} & \text { if } M_{n}<1\end{cases}
$$

so $A_{n}=\frac{1}{2} \sum_{j=1}^{n-1}\left(1-M_{j}\right)^{2} 1_{\left\{M_{j}<1\right\}}$.
d) Yes:

$$
\mathbb{E}\left(M_{n+1}^{2} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\left(M_{n}+U_{n+1}\right)^{2} \mid \mathcal{F}_{n}\right)=M_{n}^{2}+2 M_{n} \mathbb{E}\left(U_{n+1}\right)+\mathbb{E}\left(U_{n+1}^{2}\right)=M_{n}^{2}+\frac{1}{3} \geq M_{n}^{2}
$$

e) By the previous computation, we deduce that $c=\frac{1}{3}$.
f) No. M is a positive submartingale behaving like a random walk with uniform increments on the positive axis, and being reflected when it gets close to 0 . It will not converge anywhere.

