Homework 13

Exercise 1*. Let $\left(X_{n}, n \geq 1\right)$ be a sequence of i.i.d. random variables such that $\mathbb{P}\left(\left\{X_{1}=+1\right\}\right)=$ $\mathbb{P}\left(\left\{X_{1}=-1\right\}\right)=\frac{1}{2}$. Let also $\mathcal{F}_{0}=\{\emptyset, \Omega\}, \mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ for $n \geq 1$ and let $\left(H_{n}, n \in \mathbb{N}\right)$ be a predictable process with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ such that for every $n \in \mathbb{N}, \exists K_{n}>0$ with $\left|H_{n}(\omega)\right| \leq K_{n}$ for all $\omega \in \Omega$. Let finally

$$
G_{0}=0 \quad \text { and } \quad G_{n}=\sum_{j=1}^{n} H_{j} X_{j}, \quad n \geq 1
$$

From the course, we know that the process G is a martingale with respect to ($\mathcal{F}_{n}, n \in \mathbb{N}$).
a) Under the assumptions made, is it possible that $\mathbb{E}\left(H_{j} X_{j}\right)>0$ for some j ? Explain!
b) Find the unique predictable and increasing process $\left(A_{n}, n \in \mathbb{N}\right)$ such that the process $\left(G_{n}^{2}-A_{n}, n \in \mathbb{N}\right)$ is also a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$.

From now on, consider the particular case where $H_{n}(\omega) \in\{-1,+1\}$ for every $n \in \mathbb{N}$ and $\omega \in \Omega$.
c) Compute the process A in this particular case.
d) Let $a \geq 1$ be an integer and let $T=\inf \left\{n \geq 1:\left|G_{n}\right| \geq a\right\}$. Compute $\mathbb{E}(T)$ [no full justification required here].

Exercise 2. Let $0<p<1$ and $x>0$ be fixed real numbers and ($X_{n}, n \in \mathbb{N}$) be the process defined recursively as

$$
X_{0}=x, \quad X_{n+1}=\left\{\begin{array}{ll}
X_{n}^{2}+1 & \text { with probability } p \\
X_{n} / 2 & \text { with probability } 1-p
\end{array} \quad \text { for } n \in \mathbb{N}\right.
$$

a) What minimal condition on $0<p<1$ guarantees that the process X is a submartingale (with respect to its natural filtration)? Justify your answer.

Hint: The inequality $a^{2}+b^{2} \geq 2 a b$ may be useful here.
b) For the values of p respecting the condition found in part a), derive a lower bound on $\mathbb{E}\left(X_{n}\right)$.

Hint: Proceed recursively.
c) Does there exist a value of $0<p<1$ such that the process X is a martingale? a supermartingale? Again, justify your answer.

Exercise 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and \mathcal{G} be a sub- σ-field of \mathcal{F}. Let $U \sim \mathcal{U}([-1,+1])$ be a random variable independent of \mathcal{G} and M be a positive, integrable and \mathcal{G}-measurable random variable.
a) Compute the function $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying

$$
\psi(M)=\mathbb{E}(|M+U| \mid \mathcal{G})
$$

Let now $\left(U_{n}, n \geq 1\right)$ be a sequence of i.i.d. $\sim \mathcal{U}([-1,+1])$ random variables, all defined on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{n}=\sigma\left(U_{1}, \ldots, U_{n}\right), n \geq 1$. Let finally $\left(M_{n}, n \geq 1\right)$ be the process defined recursively as

$$
M_{0}=0, \quad M_{n+1}=\left|M_{n}+U_{n+1}\right|, \quad n \in \mathbb{N}
$$

b) Show that the process $\left(M_{n}, n \in \mathbb{N}\right)$ is a submartingale with respect to ($\mathcal{F}_{n}, n \in \mathbb{N}$).
c) Compute the unique predictable and increasing process $\left(A_{n}, n \in \mathbb{N}\right)$ such that the process $\left(M_{n}-A_{n}, n \in \mathbb{N}\right)$ is a martingale with respect to ($\mathcal{F}_{n}, n \in \mathbb{N}$).
d) Is it true that the process $\left(M_{n}^{2}, n \in \mathbb{N}\right)$ is also a submartingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$? Justify your answer.
e) Determine the value of $c>0$ such that the process ($N_{n}=M_{n}^{2}-c n, n \in \mathbb{N}$) is a martingale with respect to $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$.
f) Does there exist a random variable M_{∞} such that $M_{n} \underset{n \rightarrow \infty}{\rightarrow} M_{\infty}$ almost surely? (Again, no formal justification required here; an intuitive argument will do.)

