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CS 526 – Final Exam – room INM 200

There are 4 problems: 3 “regular” problems and one that consists of 6 short questions. Use
scratch paper if needed to figure out the solution. Write your final answer in the indicated
space. This exam is open-book (lecture notes, exercises, course materials) but no electronic
devices allowed. Good luck!
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The following properties of matrices might be useful:

• For an n× n matrix A, the trace is defined as: Tr(A) =
∑n

i=1 Aii.

• The trace of an outer product of two n-dimensional vectors is equal to their inner
product: Tr vwT = wTv.

• The inner product in the space of n× n real matrices is defined as 〈M,N〉 = TrMTN .

• If an n × n matrix B is real and symmetric, we have the eigen-decomposition B =∑n
j=1 λjuju

T
j where λj ∈ R and {uj}ni=1 forms an orthonormal basis. If furthermore,

the matrix is positive definite, then λj > 0 for all j.

• The operator norm of an n × n matrix C is ‖C‖ = max∥u∥=1u
TCu, u ∈ Rn. And, we

have the property that for two n× n matrices C,D : ‖CD‖ ≤ ‖C‖‖D‖.



Problem 1. (Expectation Learnability) (16 pts)

Assume that the realizability assumption holds throughout the problem.

A hypothesis class H is Expectation learnable (E learnable) if there exists a function m
(E)
H :

(0, 1) → N and a learning algorithm with the following property: For every γ ∈ (0, 1), for
every distribution D over X , and for every labeling function f : X → {0, 1}, when running
the learning algorithm on a set S of m ≥ m

(E)
H (γ) i.i.d. examples generated by D and labeled

by f , the algorithm returns a hypothesis h (which depends on S) such that E
[
L(D,f)(h)

]
≤ γ

(where the expectation is taken over the training set S). Recall that the error of a prediction
is defined to be

L(D,f)(h) := Px∼D[h(x) 6= f(x)].

1. (6 pts) Show that if a hypothesis class H is E learnable, then it is PAC learnable.

2. (6 pts) Show that if a hypothesis class H is PAC learnable, then it is E learnable.

3. (4 pts) Show that every finite hypothesis class H is E learnable with sample complexity

m
(E)
H (γ) ≤

⌈
2 log

(
2|H|
γ

)
γ

⌉
.

Hint: You can use results proved in the course, and the relation between sample
complexity of PAC learning and E learning derived in previous parts.
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Solution to Problem 1:

1. Set γ = ϵδ. By the E learnability, the algorithm running on m ≥ m
(E)
H (ϵδ) samples

returns a hypothesis h so that E
[
L(D,f)(h)

]
≤ ϵδ. Using the Markov inequality, we

have:
P
[
L(D,f)(h) ≥ ϵ

]
≤

E
[
L(D,f)(h)

]
ϵ

≤ ϵδ

ϵ
= δ.

Moreover, the number of samples needed to generate h is bounded by a function in
ϵδ, which is a function in ϵ, δ. Therefore, the requirements of the PAC learnability are
satisfied.

2. Set ϵ = γ
2
, δ = γ

2
, then by PAC learnability, we have an algorithm that running on

m ≥ m
(PAC)
H

(
γ
2
, γ
2

)
samples returns a hypothesis h so that P

[
L(D,f)(h) >

γ
2

]
≤ γ

2
. We

have

E
[
L(D,f)(h)

]
= E

[
L(D,f)(h)|L(D,f)(h) ≤

γ

2

]
P
[
L(D,f)(h) ≤

γ

2

]
+ E

[
L(D,f)(h)|L(D,f)(h) >

γ

2

]
P
[
L(D,f)(h) >

γ

2

]
≤ γ

2
P
[
L(D,f)(h) ≤

γ

2

]
+ E

[
L(D,f)(h)|L(D,f)(h) >

γ

2

]γ
2

≤ γ

2
+

γ

2
= γ

where the last inequality is due to the boundedness of L(D,f)(h), since probability is
bounded by 1.
Moreover, the number of samples needed to generate h is bounded by a function in
ϵ = γ

2
, δ = γ

2
which is a function in γ. Therefore, the requirements of the E learnability

are satisfied.

3. From the course, we know that every finite hypothesis class is PAC learnable with

sample complexity m
(PAC)
H (ϵ, δ) ≤

⌈
log

(
|H|
δ

)
ϵ

⌉
. Setting ϵ = γ

2
, δ = γ

2
, we get the result.
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Problem 2. Rayleigh Quotient(18pts)

Consider a real symmetric n × n matrix M . Recall that in this case all the eigenvalues
are real, call them λmax = λ1 ≥ λ2 · · · ≥ λn = λmin. For a unit norm vector x ∈ Rn, let
R(M,x) = xTMx be the Rayleigh quotient for M and the vector x.

1. (3pts) Show that λmin ≤ R(M,x) ≤ λmax. When do you get equality?

2. (3pts) Suppose that you want to minimize or maximize the Rayleigh quotient with
respect to the choice of x. Write down the condition of optimality.

3. (3pts) Now assume that the strict inequalities hold: λ1 > λ2 · · · > λn. Propose an
algorithm discussed in class for finding the maximum and minimum Rayleigh quotient.
Hint: The optimization problem in the second question is the constrained optimization
problem max∥x∥2=1 x

TMx. This can be converted into an unconstrained optimization
problem using a Lagrange multiplier, call it γ. This leads to the unconstrained opti-
mization of

{
xTMx− γ‖x‖2

}
.

Consider now a tensor S of order 3 and dimensions n× n× n. Assume that S is symmetric
under permutation of indices. Let x ∈ Rn. Recall that S(x, x, x) is defined as S(x, x, x) =∑

α,β,γ S
α,β,γxαxβxγ. We follow here the notational convention from the course where the

components are indexed by α, β, and γ. For a unit norm vector x define the “Rayleigh
quotient” R(S, x) = S(x, x, x).

4. (3pts) Assume that S has a unique decomposition, S =
∑n

i=1 µi ui⊗ui⊗ui where the
ui’s form an orthonormal basis, and µmax = µ1 ≥ µ2 · · · ≥ µn = µmin ≥ 0 (note that
here we assume all µi’s non-negative). Show that −µmax ≤ R(S, x) ≤ µmax (observe
the difference with the matrix case!). When do you get equalities?

5. (3pts) Write down the optimality condition for maximizing the Rayleigh quotient with
respect to x. Show that all vectors ui, i = 1, · · · , n of the decomposition of S satisfy
this condition.

6. (3pts) Now we further assume that there exists a vector x0 such that

µ1|uT
1 x0| > µ2|uT

2 x0| ≥ · · · ≥ µn|uT
nx0|

where the first inequality is strict. Propose an algorithm to find the maximum
Rayleigh quotient.
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Solution to Problem 2:

1. Consider the eigen-decomposition of M , M =
∑n

i=1 λiuiu
T
i , where the ui’s form an

orthonormal basis. The Rayleigh quotient for the vector x is

R(M,x) = xT
( n∑

i=1

λiuiu
T
i

)
x =

n∑
i=1

λi(x
Tui)

2 ≤ λmax

n∑
i=1

(xTui)
2 = λmax,

where in the last equality, we used ‖x‖ = 1 and the fact that the ui’s form an or-
thonormal basis. Similarly, we can get the lower bound, R(M,x) ≥ λmin.
Since eigenvectors are orthogonal, the upper bound is attained for u1, and the lower
bound is attained for un.

2. Differentiating the Lagrangian L(x) = xTMx − γxTx, we have dL(x)
dx

= 2Mx − 2γx.
Setting the derivative to zero, we find the optimality condition Mx = γx. (This is just
the eigenvalue equation and is satisfied by the eigenvalue-eigenvector pairs of M .)

3. When all eigenvalues are distinct the power method allows to find them all. To simplify
the exposition assume that all eigenvalues are non-negative (other-wise we need to con-
sider the absolute value). We take an initial vector not orthogonal to the eigenvectors
(typically we choose it at random). First we find the largest eigenvalue λ1 = λmax by
power iterations, and then by deflating the matrix we find λ2, and so on till we get
λn = λmin.

4. With the decomposition S =
∑n

i=1 µiui ⊗ ui ⊗ ui, the Rayleigh quotient is

R(S, x) =
∑
α,β,γ

n∑
i=1

µi u
α
i u

β
i u

γ
i x

α xβ xγ =
n∑

i=1

µi

(∑
α

uα
i x

α
)(∑

β

uβ
i x

β
)(∑

γ

uγ
i x

γ
)

=
n∑

i=1

µi

(
xTui

)3
≤

n∑
i=1

µi

(
xTui

)2
≤ µmax

n∑
i=1

(
xTui

)2
= µmax

where in the first inequality, we used µi ≥ 0 and xTui ≤ 1 since ‖x‖ = 1 . Similarly,
we get the lower bound, R(S, x) ≥ −µmax using −1 ≤ xTui.
The upper bound is attained for x = u1, and the lower bound is attained for x = −u1.

5. The derivative of the objective function with respect to a component xα is
d

dxα

(
S(x, x, x)− l‖x‖2

)
= 3

∑
β,γ

Sα,β,γxβxγ − 2lxα
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→ ∇x

(
S(x, x, x)− l‖x‖2

)
= 3S(I, x, x)− 2l x

Setting the gradient to zero, we find the optimality condition S(I, x, x) = 2l
3
x. The

vectors ui satisfy this equation with l = 3µi

2
. Indeed

S(I, ui, ui) =
∑
k

µk ui (u
T
k ui)

2 = µiui

since uT
k ui = δki.

6. By the tensor power method, under the assumption, iterating from the initial vector
x0 we converge towards xt → u1 and S(xt, xt, xt) → µ1 = µmax.
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Problem 3. Gradient Descent (16 pts)

Let X,Y ∈ Rn×n be n × n real matrices and A,B ∈ Rn×n be n × n real symmetric and
positive definite matrices. Let F : Rn×n 7→ R the function F (X) = 1

2
TrXTBX.

1. (4 pts) Show that F (X) ≥ 0 for any X.

2. (4 pts) Compute the second derivative of

f(s) = Tr(sXT + (1− s)Y T )B(sX + (1− s)Y )

for s ∈ [0, 1] and deduce that F is a convex function.

3. (4 pts) Deduce the inequality F (Y )− F (X) ≥ TrXTB(Y −X). Is F Lipschitz ?

4. (4 pts) Consider now the function G : Rn×n 7→ R with G(X) = 1
2
Tr(X − I)TA(X − I)

where I is the identity matrix. Define L(X) = F (X) +G(X).

(a) (2 pts) Write down the gradient descent algorithm for L. Call Xt the updated
matrix at time t.

(b) (2 pts) Assume that the operator norm ‖Xt‖ ≤ M stays bounded uniformly in
n. Show that

‖ 1
T

T∑
t=1

Xt − (B + A)−1A‖ ≤ 2M

ηT
‖(B + A)−1‖
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Solution:

1. Use the spectral decomposition B =
∑n

j=1 λjuju
T
j and since B is positive definite all

λj > 0 (and we can take eigenvectors with real components). Then

F (X) =
n∑

j=1

λjTrX
Tuju

T
j X =

n∑
j=1

λjTr(X
Tuj)(X

Tuj)
T

=
n∑

j=1

λj(X
Tuj)

T (XTuj) =
n∑

j=1

λj‖XTuj‖2 ≥ 0

since λj > 0 for all j.

2. We find

f
′′
(s) = 2TrXTBX + 2TrY TBY − TrXTBY − TrY TBX

= 2Tr(X − Y )TB(X − Y ) ≥ 0

Thus f is convex. Since f(s) = f((1− s).0 + s.1) we have f(s) ≤ (1− s)f(0) + sf(1).
This inequality reads

F ((sX + (1− s)Y ) ≤ sF (X) + (1− s)F (Y )

3. The gradient of F (X) is the matrix

∇XF (X) = BX

This can be computed using components ∂
∂Xij

F (X). Since F is convex it is above its
tangent and this shows (see class)

F (Y )− F (X) ≥ 〈∇XF (X), Y −X〉 = Tr(BX)T (Y −X)

Note the last result can also be found working with components.
The function is not Lipschitz because the gradient BX is not bounded (locally it is
Lipschitz but we did not talk about this in class).

4. For L the gradient is ∇L(X) = BX + AX − A. The gradient descent algorithm is as
follows: initialize with X1 and for t = 1, · · · , T do

Xt+1 = Xt − η(BXt + AXt − A)

Summing over t = 1, · · · , T we get

1

T
(XT+1 −X1) = −η((B + A)

1

T

T∑
t=1

Xt − A)

Since we assume ‖Xt‖ ≤ M uniformly in t, we can use ‖X1‖ ≤ M and ‖XT+1‖ ≤ M

to get

‖ 1
T

T∑
t=1

Xt − (B + A)−1A‖ ≤ 2M

ηT
‖(B + A)−1‖
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Problem 4. This problem consists of 6 short questions. Answer each point with a short
justification or calculation. [12 pts]

1. (2 pt) Let H be the class of indicator functions defined by the intervals over R, H =

{ha,b : a, b ∈ R, a < b} where ha,b(x) = 1[x/∈(a,b)]. What is the VC dimension of H?

2. (2 pt) Let H be the class of indicator functions defined by the intervals over R, H =

{ha,b,c,d : a, b, c, d ∈ R, a < b, c < d} where ha,b,c,d(x) = 1[x∈(a,b) OR x∈(c,d)]. What is the
VC dimension of H?

3. (2 pt) Let H be the class of triangles in R2, H = {ha,b,c : a, b, c ∈ R2, a, b, c form a triangles}
where ha,b,c(x) = 1[x∈△abc]. What is the VC dimension of H?

4. (2 pts) Let T be a 3× 3× 3 tensor, all of its entries are 1 except one, that is 2. What
is the minimum and what is the maximum multi-linear rank of such a tensor?

5. (2 pts) Let T =
∑4

r=1 ar ⊗ br ⊗ cr, where the ar, br, and cr form the columns of the
matrices A, B, and C. Is this decomposition unique? If yes, give the smallest change
you can think of to make it potentially non-unique. If no, give the smallest change
you can think of to make it unique. The matrices A = [a1, · · · , a4], B = [b1, · · · , b4],
C = [c1, · · · , c4] are:

A =


1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1

B =


3 0 0 2

0 2 1 0

0 1 2 0

2 0 0 3

C =


1 0 1 1

0 1 1 2

0 0 0 0

0 0 0 0


6. (2 pts) Let g : R 7→ R be a differentiable Lipschitz function with constant ρ. Define

hα : Rd 7→ R, with hα(x) = g(‖x‖α) where α > 0. For which values of α > 0 can
we conclude that hα a Lipschitz function without further information on g ? Give a
Lipschitz constant when this is the case.
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Solution:

1. The VC dimension is 2: A set of size 2 can be shattered by H, but for a set of size 3
with elements x1 < x2 < x3 the labeling (0, 1, 0) cannot be obtained by any ha,b ∈ H.
Therefore, the VC dimension is 2.

2. The VC dimension is 4: A set of size 4 can be shattered, but a set of size 5 with
elements x1 < . . . < x5 with labels (1, 0, 1, 0, 1) cannot be obtained by any ha,b,c,d ∈ H.
Therefore, the VC dimension is 4.

3. The VC dimension is 7: A set of size 7 which form convex hull can be shattered by class
of triangles. Consider a set of size 8, if one point is in the convex hull of the others, it
cannot be shattered. If the set form a convex hull, then the alternating labeling of the
points cannot be obtained by any triangle.

4. The multilinear-rank of any such tensor is (2, 2, 2) since regardless where we place the
entry 2, each Tx, Ty and Tz will be of size 3 × 9 and will have two rows that are all
ones, and one row of all-ones except a single 2.

5. The determinants of A and B are non-zero (easily computed since we have block
matrices). Thus these two matrices are full column rank. For C we easily see that
all column pairs are independent vectors. Thus Jennrich’s theorem applies so the
decomposition is unique. There are infinite ways to make it potentially non-unique:
for example change C14 → 2 or change A22 → 1, etc.

6. We have ∇‖x‖α = α‖x‖(α−1) x
∥x∥ . Therefore ∇hα(x) = α‖x‖(α−1) x

∥x∥g
′(‖x‖α) and

‖∇hα(x)‖ = α‖x‖(α−1)|g′(‖x‖α)| ≤ αρ‖x‖(α−1)

So hα=1 is a Lipschitz function with constant ρ. For α > 1 the equality shows that
‖∇hα(x)‖ is not bounded so we dont have a Lipschitz function. For α < 1 ‖∇hα(x)‖
is unbounded when x → 0 unless we assume that g vanishes fast enough at the origin
so we dont have a Lipschitz constant.
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