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Solutions to Homework 6

Exercise 1. a) Let us compute for ε > 0:

P({|Yn − 0| > ε}) ≤ P({Yn > 0}) = P({Yn = 1}) =
n∏

j=1

P({Xj = 1})

=
n∏

j=1

(
1− 1

(j + 1)α

)
≃ exp

−
n∑

j=1

1

(j + 1)α


where the hint was used in the last (approximate) equality. If α > 1, then

∑n
j=1

1
(j+1)α converges

to a fixed value < +∞ as n → ∞, so P({Yn > 0}) does not converge to 0 as n → ∞.

On the contrary, if 0 < α ≤ 1, then
∑n

j=1
1

(j+1)α →
n→∞

+∞, in which case P({Yn > 0}) →
n→∞

0, so

Yn
P→

n→∞
0 in this case.

b) The answer is yes. Indeed, we have E((Yn − 0)2) = E(Y 2
n ) = P({Yn = 1}), so Yn

L2

→
n→∞

0 if and

only if Yn
P→

n→∞
0.

c) The answer is again yes. Indeed, if for a given realization ω, Yn(ω) = 0, then Ym(ω) = 0 for
every m ≥ n, and therefore limn→∞ Yn(ω) = 0. This implies that

P({limn→∞ Yn = 0}) ≥ P({Yn = 0})

for any fixed value of n ≥ 1. If 0 < α ≤ 1, we have seen in question a) that P({Yn = 0}) →
n→∞

1.

So the above inequality implies that Yn →
n→∞

0 almost surely in this case.

Remark. Please note finally that when α > 1, convergence in probability does not hold, so auto-
matically in this case, quadratic convergence and almost sure convergence do not hold either.

Exercise 2. a) By independence, we obtain

P
(⋂

n≥1A
c
n

)
=
∏
n≥1

P(Ac
n) =

∏
n≥1

(1− P(An)) ≤
∏
n≥1

exp(−P(An)) = exp
(
−
∑

n≥1 P(An)
)
= 0

where we have used the fact that 1− x ≤ exp(−x) for 0 ≤ x ≤ 1. Therefore, P
(⋃

n≥1An

)
= 1.

Note: The first equality above is “obviously true”, but actually needs a proof (not required in
the homework): if (An, n ≥ 1) is a countable sequence of independent events, then it holds that
P(∩n≥1An) =

∏
n≥1 P(An). Here is why: define Bn = ∩n

k=1Ak. Observe that ∩n≥1An = ∩n≥1Bn

and Bn ⊃ Bn+1 for every n ≥ 1, so by the continuity property of P,

P(∩n≥1An) = P(∩n≥1Bn) = lim
n→∞

P(Bn) = lim
n→∞

n∏
k=1

P(Ak) =
∏
n≥1

P(An)
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b) By exactly the same argument as above, we can prove P
(⋂

n≥N Ac
n

)
= 0, ∀N ≥ 1, and we have

seen in class that this holds true if and only if P
(⋃

N≥1

⋂
n≥N Ac

n

)
= 0, i.e. P

(⋂
N≥1

⋃
n≥N An

)
= 1.

c) If for some ε > 0,
∑

n≥1 P({|Xn| ≥ ε}) = +∞, then by part b), P({|Xn| ≥ ε infinitely often}) =
1. This says that almost sure convergence (towards the limiting value 0) of the sequence Xn does
not hold, as for this convergence to hold, we would need exactly the opposite, namely that for every
ε > 0, P({|Xn| ≥ ε infinitely often}) = 0.

d1) For any fixed ε > 0, P({|Xn| ≥ ε}) = pn for sufficiently large n, so the minimal condition
ensuring convergence in probability is simply pn →

n→∞
0 (said otherwise, pn = o(1)).

d2) E((Xn − 0)2) = n2 pn, so the minimal condition for L2 convergence is pn = o( 1
n2 ).

d3) Using the two Borel-Cantelli lemmas (both applicable here as the Xn are independent), we see
that the minimal condition for almost sure convergence is

∑
n≥1 pn < +∞, satisfied in particular

if pn = O(n−1−δ).

e1) We have in this case, for any fixed ε > 0:

P({|Yn| ≥ ε}) = 2

∫ +∞

ε
dx

1

π

λn

λ2
n + x2

=
2

π

(
π

2
− arctan

(
ε

λn

))
→
n→0

0

if and only if λn →
n→∞

0.

e2) E(Y 2
n ) = +∞ in all cases, so L2 convergence does not hold.

e3) Observe first that by the change of variable y = λnx,

P({|Yn| ≥ ε}) = 2

∫ +∞

ε
dy

λn

π (λ2
n + y2)

= 2

∫ +∞

ε/λn

dx
1

π(1 + x2)
≃ 2

∫ +∞

ε/λn

dx
λn

πx2
=

2λn

π ε

when λn is small. So the minimal condition for almost sure convergence is
∑

n≥1 λn < +∞, satisfied

in particular if λn = O(n−1−δ).

Exercise 3. a) For a given ε > 0, let us first consider n sufficiently large such that∣∣∣∣µ1 + . . .+ µn

n
− µ

∣∣∣∣ < ε

2

(such an n exists by assumption). For the same value of n, we have

P
({∣∣∣∣Sn

n
− µ

∣∣∣∣ ≥ ε

})
≤ P

({∣∣∣∣Sn

n
− µ1 + . . .+ µn

n

∣∣∣∣ ≥ ε

2

})

= P

({∣∣∣∣∣
n∑

i=1

(Xi − µi)

∣∣∣∣∣ ≥ nε

2

})
≤ 4

n2 ε2
E

( n∑
i=1

(Xi − µi)

)2


=
4

n2 ε2

n∑
i,j=1

Cov(Xi, Xj) ≤
4C1

n2 ε2

n∑
i,j=1

exp(−C2 |i− j|)

≤ 8C1

n ε2

∑
k∈Z

exp(−C2 |k|) −→
n→∞

0, as
∑
k∈Z

exp(−C2 |k|) < +∞
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b) The strong law does hold in this case. However, it is not clear if the particular proof we did in
class could be made to work. Our proof breaks down at the last step where the sequence {Xn, n ≥ 1}
is decomposed into two sequences {X+

n , n ≥ 1} and {X−
n , n ≥ 1}. In this case, just because the

original sequence satisfies the assumption in the problem, does not mean that the positive part and
the negative part would each satisfy the same assumptions. The assumption on the mean is easy
enough to check. The difficult part seems to be the weak correlation assumption.

That being said, it is possible to modify a different proof of the strong law of large numbers which
does not rely on the decomposition into positive and negative parts.

c) We can check here that for n ≥ m ≥ 1, we have

Cov(Xn, Xm) = an−mVar(Xm)

and also that Var(X1) = 0 and

Var(Xm) = 1 + a2Var(Xm−1) = . . . = 1 + a2 + a4 + . . .+ a2(m−2) for m ≥ 2

From this, we conclude that when |a| < 1, Cov(Xn, Xm) satisfies the condition given in the problem
set. Besides, for every n ≥ 1, we have

µn = E(Xn) = aE(Xn−1) = an−1 x

so

lim
n→∞

µ1 + . . .+ µn

n
=

1

n

n∑
j=1

aj−1 x →
n→∞

0

when |a| < 1, for any value of x ∈ R. So µ = 0 in this case and

Sn

n
=

X1 + . . .+Xn

n

P→
n→∞

0

Exercise 4. a) For ε > 0 and n ≥ 1 fixed, let us compute, using the law of total probability:

P
({∣∣∣∣X1 + . . .+XTn

Tn
− µ

∣∣∣∣ ≥ ε

})
=
∑
k≥1

P
({∣∣∣∣X1 + . . .+XTn

Tn
− µ

∣∣∣∣ ≥ ε

} ∣∣∣∣ {Tn = k}
)
· P({Tn = k})

=
∑
k≥1

P
({∣∣∣∣X1 + . . .+Xk

k
− µ

∣∣∣∣ ≥ ε

} ∣∣∣∣ {Tn = k}
)
· P({Tn = k})

=
∑
k≥1

P
({∣∣∣∣X1 + . . .+Xk

k
− µ

∣∣∣∣ ≥ ε

})
· p(n)k

by independence of Tn and the sequence (Xn, n ≥ 1). From the proof of the weak law of large
numbers, we know that for every k ≥ 1:

P
({∣∣∣∣X1 + . . .+Xk

k
− µ

∣∣∣∣ ≥ ε

})
≤ σ2

k ε2

so

P
({∣∣∣∣X1 + . . .+XTn

Tn
− µ

∣∣∣∣ ≥ ε

})
≤ σ2

ε2

∑
k≥1

p
(n)
k

k
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A sufficient condition ensuring convergence in probability is therefore: lim
n→∞

∑
k≥1

p
(n)
k

k
= 0.

b1) Let us compute for n ≥ 1 and k ≥ 2: (noting that the probability is equal to zero for k = 1)

p
(n)
k = P({Tn = k}) =

k−1∑
j=1

P({Gn1 = j, Tn = k}) =
k−1∑
j=1

P({Gn1 = j, Gn2 = k − j})

=
k−1∑
j=1

P({Gn1 = j}) · P({Gn2 = k − j}) =
k−1∑
j=1

qj−1
n (1− qn) q

k−j−1
n (1− qn)

= (k − 1) qk−2
n (1− qn)

2

This implies that

E(Tn) =
∑
k≥2

k (k − 1) qk−2
n (1− qn)

2 =
∂2

∂z2

∑
k≥2

zk

∣∣∣∣
z=qn

(1− qn)
2

=
∂2

∂z2

(
1

1− z
− 1− z

) ∣∣∣∣
z=qn

(1− qn)
2 =

2

(1− qn)3
(1− qn)

2 =
2

1− qn

Note: This result could also have been obtained using E(Tn) = E(Gn1)+E(Gn2) together with the
fact that a geometric random variable with parameter q has expectation 1/(1− q). [NB: geometric
random variables with parameter q can be defined either on N∗ = {1, 2, 3, . . .} (as it is the case
here) or on N = {0, 1, 2, . . .}, as it was the case in Ex. 3 of Homework 4; their expectation is equal
to q/(1− q) in the latter case]

b2) From the above computations, we see that

∑
k≥1

p
(n)
k

k
=
∑
k≥2

k − 1

k
qk−2
n (1− qn)

2 ≤
∑
k≥2

qk−2
n (1− qn)

2 =
1

1− qn
(1− qn)

2 = 1− qn

so convergence in probability occurs if qn →
n→∞

1. This is in accordance with the fact that

E(Tn) →
n→∞

+∞ in this case (see part a).
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