Exercise 1 W State

Let's consider the $|W\rangle$ state:

$$
\begin{equation*}
|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle) \tag{1}
\end{equation*}
$$

Notice that it can be "factorized" as follow:

$$
\begin{equation*}
|W\rangle=\frac{1}{\sqrt{3}}|0\rangle \otimes(|01\rangle+|10\rangle)+\frac{1}{\sqrt{3}}|100\rangle \tag{2}
\end{equation*}
$$

Now let $U=(X \otimes I) \cdot C N O T$, this operator gives the Bell-state: $U|00\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$. So we can rewrite with $C U$ the control- U operator (with control on the first qubit and target on the last two qubits):

$$
\begin{align*}
|W\rangle & =\sqrt{\frac{2}{3}}|0\rangle \otimes U|00\rangle+\frac{1}{\sqrt{3}}|100\rangle \tag{3}\\
& =\sqrt{\frac{2}{3}}(X \otimes I \otimes I)(|1\rangle \otimes U|00\rangle)+\frac{1}{\sqrt{3}}(X \otimes I \otimes I)|000\rangle \tag{4}\\
& =(X \otimes I \otimes I) C U\left(\sqrt{\frac{2}{3}}|100\rangle+\sqrt{\frac{1}{3}}|000\rangle\right) \tag{5}
\end{align*}
$$

Finally, with the $R Y_{\theta}$ operator with $\theta=2 \arccos \frac{1}{\sqrt{3}}$ we have:

$$
\begin{equation*}
R Y_{\theta}|0\rangle=\sqrt{\frac{1}{3}}|0\rangle+\sqrt{\frac{2}{3}}|1\rangle \tag{6}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
|W\rangle=(X \otimes I \otimes I) C U\left(R Y_{\theta} \otimes I \otimes I\right)|000\rangle \tag{7}
\end{equation*}
$$

Here is a corresponding circuit on IBMQ:

Note that the solution is not unique. For instance this would work as well:

