
Final Exam Solution
Traitement Quantique de l’Information

Problem 1: Quiz 20 points

1) [5 pts] True. Since M is a unitary matrix (MM† = M†M = I), it is a valid quantum
operation.

2) [5 pts] False. Since the four states are orthogonal in C2 ⊗ C2, so they can be cloned.

3) [5 pts] False. | ↑〉 and (| ↑〉 + | ↓〉)/
√

2 are not orthogonal in C2, but they are repre-
sented by orthogonal vectors on Bloch sphere.

4) [5 pts] False. Since Bob is measuring in the {|α〉, |α⊥〉} basis, his qubit will be in one
these two states, independent of Alice’s measurement.

Problem 2: Interferometer 30 pts
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Either D1 or D2 clic. Only one receives energy for each coming photon.

3) [2 pts] Matrix A has to be unitary, AA† = A†A = I. From this constraint we must
have that columns ( and rows) of the matrix are unit norm and orthogonal.
First and the third columns must be orthogonal, so εX = −ε

√
1− ε2, which implies (for

ε 6= 0) X = −
√

1− ε2.

4) [13 pts] Recall that the state after the dephrasor is −e
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After the last semi-transparent mirror the final state is
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So, for probabilities we have
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We can see that the probabilities sum to 1.

Problem 3: Entanglement 20 pts

1) [5 pts]H = C2⊗C2⊗C2⊗C2, since there 4 qubits in total. The total state is |φ〉⊗|ψ〉

2) [10 pts] Possible states of Alice’s qubits are |B1〉, |B2〉, |B3〉, |B4〉. Suppose they are in
state |B1〉, so the measurement by Alice is the projection |B1〉〈B1| applying on qubits in
Alice’s possession. Now, we compute the states of Bob and Charlies’s qubits.
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Firs note that, we have
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Normalizing the state, we get

|B1〉A(α|00〉BC + β|11〉BC)

By similar calculations for other possible states, we find that the final possible states are

|B1〉A(α|00〉BC + β|11〉BC)

|B2〉A(α|11〉BC + β|00〉BC)

|B3〉A(α|11〉BC − β|00〉BC)

|B4〉A(α|00〉BC − β|11〉BC)

3) [5 pts] Only two classical bits are required, one for Bob and one for Charlie.

If Alices measures |B1〉, then Bob and Charlie’s qubits are in the state α|00〉BC +
β|11〉BC , so they should do nothing. Alice sends 0 to both Bob and Charlie.

If Alices measures |B2〉, then Bob and Charlie’s qubits are in the state α|11〉BC +
β|00〉BC , so they should apply XB ⊗XC . Alice sends 1 to both Bob and Charlie.

If Alices measures |B3〉, then Bob and Charlie’s qubits are in the state α|11〉BC −
β|00〉BC , so they should apply XB ⊗XC . Alice sends 1 to both Bob and Charlie.

If Alices measures |B4〉, then Bob and Charlie’s qubits are in the state α|00〉BC −
β|11〉BC , so they should do nothing. Alice sends 0 to both Bob and Charlie.

Problem 4: Spin and Density Matrix 30 pts
1) [6 pts]

Ut = e−
it
~ H = e

iωt
2
σz =

[
e
iωt
2 0

0 e−
iωt
2

]
In the last equality, we used the fact that σz is a diagonal matrix. Note that | ↑〉 and | ↓〉
are eigenvectors of Ut with eigenvalues e
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2 , e−

iωt
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The trajectory on Bloch sphere is shown below.
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2) [6 pts]
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where in the second equality we used the fact that | ↑〉 and | ↓〉 are eigenvectors of σz
with eigenvalues 1, −1, respectively.
For θ = 0, E = −~ω

2
, which is the minimal energy.

For θ = π/2, E = 0.
For θ = π, E = +~ω

2
, which is the maximal energy.

For variance we have
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Variance vanishes for θ = 0, π.

3) [6 pts]
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4) [6 pts] Note that we can write ρt = 1

2
(I +−→at .−→σ ), where

ax(t) = axcos(ωt), ay(t) = −axsin(ωt), az(t) = az

For a = (1/2, 0, 1/2), the trajectory on bloch sphere is given below
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5) [6 pts]
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We see that the energy is independent of t and ax.

For variance, we have
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Variance vanishes for az = ±1, which are the states | ↑〉, | ↓〉.
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