Final Exam Solution
Traitement Quantique de I'Information

Problem 1: Quiz 20 points

1) /5 pts] True. Since M is a unitary matrix (MM = MM = I), it is a valid quantum
operation.

2) [5 pts] False. Since the four states are orthogonal in C* ® C?, so they can be cloned.

3) /5 pts] False. | 1) and (] 1) 4| 1))/v/2 are not orthogonal in C2, but they are repre-
sented by orthogonal vectors on Bloch sphere.

4) [5 pts] False. Since Bob is measuring in the {|«), |a; )} basis, his qubit will be in one
these two states, independent of Alice’s measurement.

Problem 2: Interferometer 30 pts

1) [10 pts/After the first semi-transparent mirror the photon in state
1
HP2) = (1) - [2)

After the reflecting mirrors the state is

1) —12), _ —1H)+12)
M) !
After the dephasor, '
—[1)+2)\ _ —e?[1) +12)

P¢( \/§ )_ \/5

And, after the last semi-transparent mirror the state is

—e?1) +12), 1 B et e
H(—z) = E( \/5(|1> +12)) + \/5(|1> 12)))
1— et 1+ e
Loy 1y

2) [5 pts]

e o 5 . 9 : 2
P(Dy) = |1 5 ‘ = i((l—cos(qﬁ)) +sin(¢) ) = i(?—Qcos(gb)) = %(1—005(@) = sm(%)

e 5
P(D,) = |1 +2 ‘ = %((1+cos(¢))2+sin(¢)2) = %(24—2005(@) = %(1+cos(¢)) = cos(g)2
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Either Dy or Dy clic. Only one receives energy for each coming photon.

3) /2 pts] Matrix A has to be unitary, AAT = ATA = . From this constraint we must
have that columns ( and rows) of the matrix are unit norm and orthogonal.
First and the third columns must be orthogonal, so eX = —ey/1 — €2, which implies (for

e£0) X = —/I—é.

4) /13 pts| Recall that the state after the dephrasor is —P)+12). Applying matrix A, we
V2
get

—e?(1) +12),  —e™ 1
A % ) = ﬁA|1>+EA|2>

1

it _
W’l ﬁ(v1—€ 10) + €[2))

1 — €2 e

V2 V-5

After the last semi-transparent mirror the final state is

)+

|1>+ﬁ|2>

1 — €2 e'? € 1 —e2 e'? €
H( —5 10 = Em + %|2>) =\ —5 HI0O) - EHM + EHB)
_ 1_€2|>_ei¢|1>+|2>+i|1>_|2>
V2 V2 V2 V2 V2
_ _ o i
_ 1 2€2|0>+ € 26 1y — 6+26 2)
So, for probabilities we have
P(Absorption) = ! _262
N 70
B(D)) = |——" = i((e — cos())? + sin(¢)?) = i(l + € — 2ecos(9))
. 6+€i¢ 2 1 9 . 2 1 9
P(Dy) = ‘ 5 ‘ = Z((€+ cos(9))* + sin(¢)?) = Z(l + €“ + 2ecos(9))

We can see that the probabilities sum to 1.

Problem 3: Entanglement 20 pts

1) /5 pts/H = C*®@C* @ C*® C?, since there 4 qubits in total. The total state is |¢) ® |¢))
2) [10 pts] Possible states of Alice’s qubits are |By), |Bs),|Bs), |Bs). Suppose they are in
state |B1), so the measurement by Alice is the projection |B;)(B;| applying on qubits in

Alice’s possession. Now, we compute the states of Bob and Charlies’s qubits.
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Firs note that, we have

(Bi|a(a|0) + B[1)) a(—510) 4]00) 5 + )alll)pc)

1
=
(100} 100) 5+ a01) 4 11} + BI10).4100) s + BI11) 411} )

=
V2
<BI|A\/—

«Q
= —100 —111
2| >BC+2| >BC

Al00) 5+ 1)l 1150) = B1) a5 (al00) e + Bl11)5c)

IB1) a(Bula(0]0) + BI1)) (= i

\/5!0>

Normalizing the state, we get

| B1) 4(a]00) g + B|11) pc)
By similar calculations for other possible states, we find that the final possible states are
)a(a00)gc + B[11) e)
| B2) a(a[11) pc + 5100) 5e)
| Bs)a(al11) pe — B100) o)
| Bu) a(a|00) pe — BI11) pe)

3) /5 pts] Only two classical bits are required, one for Bob and one for Charlie.

If Alices measures |By), then Bob and Charlie’s qubits are in the state «|00)pc +
BI11) pc, so they should do nothing. Alice sends 0 to both Bob and Charlie.

If Alices measures |Bs), then Bob and Charlie’s qubits are in the state «|11)pc +
£100) e, so they should apply Xp ® X¢. Alice sends 1 to both Bob and Charlie.

If Alices measures |Bs), then Bob and Charlie’s qubits are in the state a|ll)pc —
B100) e, so they should apply Xp ® X¢. Alice sends 1 to both Bob and Charlie.

If Alices measures |By), then Bob and Charlie’s qubits are in the state «|00)pc —
B|11) e, so they should do nothing. Alice sends 0 to both Bob and Charlie.

Problem 4: Spin and Density Matrix 30 pts
1) [6 pts/

Twt
_it iwt ez 0
U =el=e2% = _iwt
0 e 2

In the last equality, we used the fact that I is a diagonal matrix. Note that | 1) and | )
are eigenvectors of U, with eigenvalues e 5t , e~ % , respectively.

iwt

Udlin) = €% cos(3)| 1)+ e~ % cPsin()] 1) = ¥ (cos(5)] 1) + eIsin(3)]| 1))

The trajectory on Bloch sphere is shown below.
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2) [6 pts]
(1) = ([ Hlth) = — o (el

= =22 (Ccos(S1 1) + e Dsin()| 1) (cos(3) (1| — e Dsin(C)(L )
0

0, . 0,  hw
= —7(003(5) — Szn(ﬁ) ) = —7003(9)

where in the second equality we used the fact that | 1) and | |) are eigenvectors of o,
with eigenvalues 1 —1, respectively.

For 6 = 0, E Wthh is the minimal energy.

For 0 = / 2 0

For§ =n, F = —1—%, which is the maximal energy.

For variance we have

H? = (
hw hw hw
Var = (U [H 1) — (ta[H|)* = (57)* = (57)7c0s(0)” = (5)*(1 = cos(60)°)
Variance vanishes for 6§ = 0, 7.

3) [6 pts]

1 1{l14+a, a,
Lo = §(I+awam+az0-z) - 5 [ :|

Ay 1—a,

4) [6 pts] Note that we can write p, = $(I+ @;.7), where
a;(t) = azcos(wt), a,(t) = —azsin(wt), a.(t) =a,

For a = (1/2,0,1/2), the trajectory on bloch sphere is given below



5) [6 pts]

E(t) = Tr[Hp]
. hw 1 0 14+a, e“a,
_ITT[ [0 —1} [e‘i‘”tam 1— az]]

hw 1+a, e“ta,

N _ITT[{ e Wa, —1+ az]]
hw

pr—y ——az
2

We see that the energy is independent of ¢t and a,.

For variance, we have

Var = Tr[H?p;] — Tr[Hp;)?

= "priiip) - Xy
- Certy | Lo - e
= %pa-a)

Variance vanishes for a, = +1, which are the states | 1),] ).



