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Solutions to Problem Set 12

Exercise 1 - Control of plasma burn

(a) Does a burning ITER plasma risk undergoing thermal instability?

Thermal stability can be determined from the energy balance equation:
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As ignition is approached, it is justifiable to neglect P, (i.e. set P, = 0) because
the a particles become the primary source of heating. Keeping in mind that we have
assumed n = const, we then have
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In equilibrium (4- = 0), the solution is
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where T} is the equilibrium temperature.

Consider now a small variation of temperature AT such that T'= Ty + AT
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If this variation occurs near equilibrium, we can substitute the equilibrium solution
to obtain the final expression:
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The stability of the solution is thus determined by the sign of [(UT—M% -1+ %%@

(negative = stable, positive = unstable). The stability criterion hence becomes
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We now use the scaling law for 7z, considering only factors of T',
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This implies that the criterion
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is satisfied, indicating that the plasma burn should be stable.
(b) What measure can you think of to control the burn and prevent instability?

e Decrease heating power (if any).
e Gas and/or impurity injection.

e Reduce magnetic field/turn off the coils.

Exercise 2 - On the use of Tritium in ITER and fusion reactors
(a) Calculation of the Tritium burn-up fraction for a generic fusion reactor:

L (14)

T N <OV>pT

/B

In this expression, 7 is the confinement time, ny is the Tritium ion density, and
< ov >pr is the fusion reactivity for Deuterium-Tritium reactions. The burn-up
fraction represents the fraction of Tritium that undergoes fusion reactions before
being lost from the plasma. For the given parameters:
1
fB= - ~ 9% (15)

L+ 2[s] - 2x1029[m—3] - 2.475x10~22[m3 /5]
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Calculation of the Tritium burn-up fraction for ITER:
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For ITER, the values of 77, ny, and < ov >pr are specific to its operating conditions:

fo L ~11% (17)

L+ 1[s] - 1x1020[m=3] - 1.1x10~22[m3 /5]

This lower burn-up fraction compared to a generic reactor reflects the specific design
and operational parameters of ITER.

Estimation of the Tritium mass burn rate for a generic reactor, considering thermal
to electrical power conversion efficiency:
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The coefficient 56 converts the fusion power output into the annual mass burn rate of
Tritium, accounting for the energy release per fusion reaction. Assuming the reactor
produces 1 GW of thermal power and with a conversion efficiency of 40%:
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2 = 56 x 1/0.4 = 140 [kg/year (19)

For ITER, which operates at 10% of the power output of a full-scale reactor:
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o= 56 x 0.1 x 1/0.4 = 14 [kg/year] (20)
Determination of the Tritium inventory mass required for steady operation of a reac-
tor:
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Where ¢, is the plant operation time per year, 1y is the fueling efficiency, and fp is
the burn-up fraction. This expression estimates the necessary Tritium inventory to
maintain continuous reactor operation. For the reactor:

B 1 x 140
365 x 0.5 x 0.09

M ~ 8.5 kg (22)

For ITER:
1x14

~ 365 x 0.2 x 0.011
This calculation incorporates the operational parameters and burn-up fraction to

determine the required Tritium inventory, highlighting the greater demand for Tritium
in ITER due to its lower burn-up efficiency.
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~ 17.4 kg (23)



