Solution 11
Quantum Information Processing

Exercise 1 states, reduced density matrix, entropy
(a)

$$
\begin{aligned}
\left|W_{\theta}\right\rangle\left\langle W_{\theta}\right| & =\frac{\cos ^{2} \theta}{2}|100\rangle\langle 100|+\frac{\cos ^{2} \theta}{2}|010\rangle\langle 010|+\sin ^{2} \theta|001\rangle\langle 001| \\
& +\frac{\cos ^{2} \theta}{2}(|100\rangle\langle 010|+|010\rangle\langle 100|)+\frac{\cos \theta \sin \theta}{\sqrt{2}}(|100\rangle\langle 001|+|001\rangle\langle 100|) \\
& +\frac{\cos \theta \sin \theta}{\sqrt{2}}(|010\rangle\langle 001|+|001\rangle\langle 010|)
\end{aligned}
$$

So we find (using cyclicity of trace and inner product for AB system)

$$
\begin{equation*}
\rho_{C}=\operatorname{Tr}_{A B}\left[\left|W_{\theta}\right\rangle\left\langle W_{\theta}\right|\right]=\cos ^{2} \theta|0\rangle\langle 0|+\sin \theta^{2}|1\rangle\langle 1| \tag{1}
\end{equation*}
$$

And (using cyclicity of trace and inner product for C system)

$$
\begin{align*}
\rho_{A B}=\operatorname{Tr}_{C}[|W\rangle\langle W|] & =(\cos \theta)^{2}(|10\rangle\langle 10|+|10\rangle\langle 01|) \tag{2}\\
& +(\cos \theta)^{2}(|01\rangle\langle 10|+|01\rangle\langle 01|) \tag{3}\\
& +(\sin \theta)^{2}|00\rangle\langle 00| \tag{4}\\
& =(\cos \theta)^{2}\left|\beta_{01}\right\rangle\left\langle\beta_{01}\right|+(\sin \theta)^{2}|00\rangle\langle 00| \tag{5}
\end{align*}
$$

(b) $\rho_{A B}$ is a matrix of size 4×4 while ρ_{C} is of size 2×2. They are both rank 2 with non-zero eigenvalues $(\cos \theta)^{2}$ and $(\sin \theta)^{2}$ (notice that $\left|\beta_{01}\right\rangle$ is orthonormal with $|00\rangle$). Note that the matrix $\rho_{A B}$ has two extra zero eigenvalues.
(c) In both cases, the Von Neumann entropy is:

$$
\begin{equation*}
S=-\left(\cos ^{2} \theta\right) \log \left(\cos ^{2} \theta\right)-\left(\sin ^{2} \theta\right) \log \left(\sin ^{2} \theta\right) \tag{6}
\end{equation*}
$$

(d) Here we can find the condition $(\sin \theta)^{2}<\frac{\sqrt{2}-1}{\sqrt{2}+1}$ without much calculation in the following way. By linearity and cyclicity

$$
\operatorname{Tr} \mathcal{B} \rho_{A B}=(\sin \theta)^{2}\langle 00| \mathcal{B}|00\rangle+(\cos \theta)^{2}\left\langle\beta_{01}\right| \mathcal{B}\left|\beta_{01}\right\rangle
$$

Let us take the angles that maximize the term $\left\langle\beta_{01}\right| \mathcal{B}\left|\beta_{01}\right\rangle$ and make it equal to $2 \sqrt{2}$. For the other term since it is a product state we must certainly have $\langle 00| \mathcal{B}|00\rangle \geq-2$. Thus we get for these angles:

$$
\operatorname{Tr} \mathcal{B} \rho_{A B} \geq-2(\sin \theta)^{2}+2 \sqrt{2}(\cos \theta)^{2}
$$

To check violation of the Bell inequality we impose $-2(\sin \theta)^{2}+2 \sqrt{2}(\cos \theta)^{2}>2$ which gives the condition $(\sin \theta)^{2}<\frac{\sqrt{2}-1}{\sqrt{2}+1}$.

The computation for al angles of the average of the Bell operator is done as follows.

$$
\begin{equation*}
\langle 00| A \otimes B|00\rangle=\left(\cos (\alpha)^{2}-\sin (\alpha)^{2}\right)\left(\cos (\beta)^{2}-\sin (\beta)^{2}\right)=\cos (2 \alpha) \cos (2 \beta) \tag{7}
\end{equation*}
$$

On the other hand, notice: $\left|\beta_{01}\right\rangle=(X \otimes I)\left|\beta_{00}\right\rangle$ So in fact, with $\tilde{A}=X A X$ we have:

$$
\begin{equation*}
\left\langle\beta_{01}\right| A \otimes B\left|\beta_{01}\right\rangle=\left\langle\beta_{00}\right| \tilde{A} \otimes B\left|\beta_{00}\right\rangle \tag{8}
\end{equation*}
$$

Now it can be checked that with $\tilde{\alpha}=\frac{\pi}{2}-\alpha$ we have:

$$
\begin{equation*}
\tilde{A}=X A X=|\tilde{\alpha}\rangle\langle\tilde{\alpha}|-\left|\tilde{\alpha}^{\perp}\right\rangle\left\langle\tilde{\alpha}^{\perp}\right| \tag{9}
\end{equation*}
$$

Hence using the formula from the course:

$$
\begin{equation*}
\left\langle\beta_{01}\right| A \otimes B\left|\beta_{01}\right\rangle=\cos (2(\tilde{\alpha}-\beta))=\cos (\pi-2(\alpha+\beta))=-\cos (2(\alpha+\beta)) \tag{10}
\end{equation*}
$$

Putting things together gives a general expression for $\operatorname{Tr} \mathcal{B} \rho_{A B}$ in terms of $\theta, \alpha, \beta, \alpha^{\prime}, \beta^{\prime}$ which however is not easily optimized (if one would like to find angles that maximize it for given θ).

For the last question: note that for a density matrix of the form $\rho_{A} \otimes \rho_{B}$ the locality assumption is true i.e. $p(a, b \mid \alpha, \beta)=p(a \mid \alpha) p(b \mid \beta)$. Indeed if say A and B choose the α, β measurement basis the probablity distributions are (by the measurement principle for mixed states)

$$
p(a, b \mid \alpha, \beta)=\langle\alpha, \beta| \rho_{A} \otimes \rho_{B}|\alpha, \beta\rangle
$$

and

$$
p(a \mid \alpha)=\langle\alpha| \rho_{A}|\alpha\rangle, \quad p(a \mid \alpha)=\langle\alpha| \rho_{A}|\alpha\rangle
$$

Thus by the general theory $\left|\operatorname{Tr} \mathcal{B} \rho_{A} \otimes \rho_{B}\right| \leq 2$. Hence this is also true for any convex combination $\sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}$

Exercise 2 Dynamics of one-qubit density matrix

(a) From Homework 5 we can write down with $\alpha_{t}^{2}+\beta_{t}^{2}=1$ and $n_{x}^{2}+n_{z}^{2}=1$:

$$
\begin{equation*}
U_{t}=\alpha I+\beta\left(n_{x} \sigma_{x}+n_{z} \sigma_{z}\right) \tag{11}
\end{equation*}
$$

Now we can compute:

$$
\begin{equation*}
\rho_{t}=U_{t} \rho_{0} U_{t}^{\dagger} \tag{12}
\end{equation*}
$$

After a (long) calculation, one finds:

$$
\begin{align*}
& a_{x}(t)=a_{x}(0)\left(\alpha^{2}+\beta^{2} n_{x}^{2}-\beta^{2} n_{z}^{2}\right)-2 a_{y}(0) \alpha \beta n_{z}+2 a_{z}(0) \beta^{2} n_{x} n_{z} \tag{13}\\
& a_{y}(t)=2 a_{x}(0) \alpha \beta n_{z}+a_{y}(0)\left(\alpha^{2}-\beta^{2} n_{x}^{2}-\beta^{2} n_{z}^{2}\right)-2 a_{z}(0) \alpha \beta n_{x} \tag{14}\\
& a_{z}(t)=2 a_{x}(0) \beta^{2} n_{x} n_{z}+2 a_{y}(0) \alpha \beta n_{x}+a_{z}(0)\left(\alpha^{2}-\beta^{2} n_{x}^{2}+\beta^{2} n_{z}^{2}\right) \tag{15}
\end{align*}
$$

(b) One can check this after a long calculation using the previous formulas
(c) It suffices to notice that $1-\left\|a_{t}\right\|^{2}=\operatorname{det}\left(\rho_{t}\right)=\operatorname{det}(\rho)=1-\|a\|^{2}$

