Locality

Sanidhya Kashyap

POCS, Fall 2023

Sanidhya Kashyap Locality 1/36

Efficiency matters

Figure 1: The Line, Saudi Arabia

Sanidhya Kashyap Locality 2/36

Efficiency matters

Xeon Phi” Coprocessor

LR N\
IR

g N
|

i

H

Figure 2: Devices are complicated

Sanidhya Kashyap Locality 3/36

@ Principle of locality

@ Types of locality

@ Approaches that exploit locality
e Caching
o Prefetching
e Partitioning

@ Locality examples
e Data structure layout
o Locality in locking primitives
o Locality in NUMA machines

Sanidhya Kashyap Locality 4/36

Locality refers to the idea that interactions or effects are limited to
immediate, adjacent areas.

@ In computing: Locality refers to the efficiency of data access and processing

@ Modern computers are designed using the principle of locality

o Caches, predictive loading, faster storage transfer

Sanidhya Kashyap Locality 5/36

Efficient data movement is all that matters

e Time/energy cost: moving data
e One compute unit to a storage unit (CPU <—— memory)
o One storage unit to another (disk <—— memory)

@ Communication links also need spaces
o Buses, networks are bottlenecks

Sanidhya Kashyap Locality 6/36

Efficient data movement is all that matters

e Time/energy cost: moving data
e One compute unit to a storage unit (CPU <—— memory)
o One storage unit to another (disk <—— memory)

@ Communication links also need spaces
o Buses, networks are bottlenecks

At the end, we want to minimize data movement or have data ready when we
want to work with it

Sanidhya Kashyap Locality 6/36

Achieving efficiency becomes complicated

Fundamental limitations exists:
@ Packing computation and memory in a limited space

@ Shrinking distance among units:
o Failure of Dennard scaling
e Cooling is becoming an issue even with 3D chips

Sanidhya Kashyap Locality 7/36

An example of complexity: the memory hierarchy

@ Time scale for CPU to access data (or data movement latency):
o L1 access: ~1ns

e L2 access: ~4ns

o L3 access (local): ~12-20ns

o L3 access (remote): ~30-90ns

e Local DRAM: ~80ns

e Remote DRAM: ~130-200ns

o Byte addressable non-volatile memory: ~300ns
e SSD: ~2-40us

e Remote machine: ~2us+

e HDD: ~10ms

Sanidhya Kashyap Locality 8/36

An example of complexity: the memory hierarchy

@ Time scale for CPU to access data (or data movement latency):
o L1 access: ~1ns

e L2 access: ~4ns

o L3 access (local): ~12-20ns

o L3 access (remote): ~30-90ns

e Local DRAM: ~80ns

e Remote DRAM: ~130-200ns

o Byte addressable non-volatile memory: ~300ns
e SSD: ~2-40us

e Remote machine: ~2us+

e HDD: ~10ms

How do we ensure that we can keep up with this complexity?

Sanidhya Kashyap Locality 8/36

An example from the past: The rise of virtual memory

@ Two-level memory hierarchies in the ATLAS computer
e Main memory + auxiliary storage

@ Demand paging
@ Backbone of multi-programming

Sanidhya Kashyap Locality 9/36

Background: “Paging to death” — thrashing

Throughput DISK
(jobs/sec) H

t . N
Ny

“When it was first observed in the 1960s, thrashing was an unexpected, sudden drop in
throughput of a multiprogrammed system ... | explained the phenomenon in 1968 and
showed that a working-set memory controller would stabilize the system ..."

— Peter D. Denning

Sanidhya Kashyap Locality 10/36

Working set model

Describes the set of information that a process needs to access in a given period
of time to carry out its information.

@ Model program’s memory behavior over time

o Working set of a program:
e Programmer’s view: Smallest collection of information present in main memory to
assure efficient execution of a program
e System’s view: The set of most recently referenced pages

Sanidhya Kashyap Locality 11/36

Working set model

Describes the set of information that a process needs to access in a given period
of time to carry out its information.

@ Model program’s memory behavior over time

o Working set of a program:
e Programmer’s view: Smallest collection of information present in main memory to

assure efficient execution of a program
e System’s view. The set of most recently referenced pages

@ The working set is a reflection of the current active locality of reference for a process

Sanidhya Kashyap Locality 11/36

Relationship between working set and locality

@ Locality allows the concept of working set to be effective
@ Locality determines which resources are required with some degree of accuracy

o Without locality, unable to predict future resource requirements
o Leads to inefficient systems

Sanidhya Kashyap Locality 12/36

Types of locality (from parallel programming)

@ Temporal locality
@ Spatial locality
© Network locality

Sanidhya Kashyap Locality 13/36

1. Temporal locality

Repeatedly access same memory locations over time period

@ Frequent access to sum's memory
location illustrates temporal locality

@ Other examples:

e Function call and recursion
e Caching data

Figure 3: sum access

Sanidhya Kashyap Locality 14 /36

2. Spatial locality

Access nearby memory locations within a small time frame

o Consecutive memory access of array

@ Other examples:

e Sequential vs random access of
storage media

o Accessing memory in a row-by-row
fashion

Figure 4: array access

Sanidhya Kashyap Locality 15/36

3. Network locality

Access to a memory location nearby is faster than access to a memory
location that is farther

@ Examples:
e Caches in CPUs: L1, L2, LLC
e Multi-socket machines
o Content delivery networks (CDNs)
@ Minimize the latency and bandwidth requirements by minimizing the distance for
data access

Sanidhya Kashyap Locality 16 /36

Locality becomes important for today's machines

DRAM Disk
— =
NIC erconne erconne DRAM
DRAM Interconnect erconne DRAM
Disk i
! cPu | cru | cpu | cpu cpu | cru | cpu | cru [

Figure 5: Simplified view of a 4-socket machine

@ Accessing data from the local socket is faster than accessing from the remote socket
o Described as non-uniform memory access (NUMA)

Sanidhya Kashyap Locality

Approaches using locality principle

@ Caching
o Prefer sequential access over random access

@ Partitioning of data or computation

Use cases: working set, lock algorithms, out-of-core graph algorithms, distributed kv
stores

Sanidhya Kashyap Locality 18 /36

Keep a working set of data close to the CPU that is used frequently

e Ubiquitous in systems

CPU caches

MMUs: TLB

Networks (edge caches)

OS/DB buffers; storage device controller, DRAMs in storage

Sanidhya Kashyap Locality 19/36

One form: Sequential access

Sequential access is faster than random access

@ Comes from the physical properties of devices

e Hard drives
@ Mechanically moving parts: seek time >> transfer time
@ Reading a byte is not cheaper than reading a page
o Flash/solid state devices: only large blocks can be written
o DRAM
o Block addressing and transfer via the bus
e TLBs (again)

@ Examples: write-ahead logging, block nested loop joins

Sanidhya Kashyap Locality 20/36

Partitioning

Splitting up the parts of resources and using divide and conquer

@ Decomposing an embarrassingly parallel tasks
e Embarrassing parallel jobs: Do not require any synchronization
e Can work independently
e Decompose a large piece of the job, and process them in parallel
e Ex. Map/reduce

Sanidhya Kashyap Locality 21/36

Partitioning

Splitting up the parts of resources and using divide and conquer

@ Decomposing an embarrassingly parallel tasks
e Embarrassing parallel jobs: Do not require any synchronization
e Can work independently
e Decompose a large piece of the job, and process them in parallel
e Ex. Map/reduce

@ But they are not applicable everywhere
o Non-uniform distribution of access in a key-value store
e Synchronizing tasks

Sanidhya Kashyap Locality 21/36

Why locality matters so much?

@ Locality starts impacting when the cost to access/modify/move data changes by a
huge factor.

@ Several scenarios to keep in mind with respect to locality:
e Minimizing data movement
o Caching, partitioning for parallel computation and movement
@ Involves either moving computation to data or moving data to the computation unit
e Data layout for efficient fetching of data
@ Sequential vs random
e Overlapping computation and data movement
o Prefetching

Sanidhya Kashyap Locality 22 /36

Examples in detail

© Data structure layout
@ Locking primitives minimizing data movement
© NUMA: Data structure replication and partitioning

Sanidhya Kashyap Locality 23/36

Data layout

@ When accessing memory, CPU accesses data in a way that impacts application’s
performance

@ Two data structures as an example:
e Arrays
o Tree data structure

Sanidhya Kashyap Locality 24 /36

@ Matching storage layout with the looping order of algorithms
e Sequential vs random access
o Example: Matrix

@ Stored as All, Al12, ..., Aln, A21, All | A21 | ... | Aml
A22, A2n, ..., Amn Al12 | A22 | ... | Am2
@ Loop: foriinl... n{forjinl.. m | ..
{ Aij ... }} efficient Aln | A2n | ... | Amn
@ Loop: forjinl... m{foriinl. n

@ Align storage layout with use cases if
possible
o Loop reordering in compilers
e Sorting

{ Aijj ... }} inefficient

Sanidhya Kashyap Locality 25/36

Locality with respect to locks

@ Locks are the basic building blocks for concurrent systems
@ Locks:

e Provide mutually exclusive access to shared data

o Order waiters accessing the critical section >

@ Lock algorithms try to minimize the movement of shared data

Threads

e

[Q—

File

Figure 6: Threads going to access a file protected by a lock

Sanidhya Kashyap Locality 26 /36

Spin locks basic behavior

e Waiters wait for their turn
@ Locks serialize the access: Introduce sequential bottleneck

L =
R =05 %
R

spin critical Resets I_ock
lock section upon exit

—
/

Figure 7: Basic spinlock (taken from Art of Multiprocessor Programming)

Sanidhya Kashyap Locality 27 /36

Locks first try to minimize contention

@ Contention: Threads writing to the TAS lock

same cache line (shared data)

@ Hardware maintains a consistent state
of the shared data using the Queue-based lock
coherence protocol e

Time

Threads

Figure 8: Lock latency

@ TAS broadcasts to everyone of the lock situation
o Saturates memory bandwidth (different from locality)

@ Queue lock: Maintains a queue of waiters and notify next in line without bothering

others
e Minimizes shared data contention (cache line)

Sanidhya Kashyap Locality 28 /36

Locality in locks

@ Let's consider a NUMA machine
o Accessing the local socket is faster than remote socket

NUMA node 1 NUMA node 2 NUMA oblivious

[we Jai—{ ws | o w3]
i Wit
5

File

Figure 9: Accessing in non-NUMA fashion

Sanidhya Kashyap Locality 29 /36

Locality in locks ...

@ Let's consider a NUMA machine
o Accessing the local socket is faster than remote socket

NUMA node 1 NUMA node 2 NUMA oblivious

[we Je—{ ws | o w3}

Wi

- NUMA aware/hierarchical
\¥{_W'ﬂ wiwe[w2[wa[wa[ws

File

Figure 10: Accessing in NUMA fashion

@ Group lock waiters from one socket, process them, and then pass to another socket

Sanidhya Kashyap Locality 30/36

NUMA-aware lock

e Comprises of multiple locks (n+1)

o A global lock . 8
o NUMA node lock on each node | NUMA node 1 NUMA node 2

Figure 11: Cohort lock

@ Acquire: First acquire the local node lock, then acquire the global lock
@ Release: First release the global lock, then release the local lock

@ Maintain locality of data: minimize cache-line bouncing
o Passes the lock within the same socket multiple times before releasing the global lock

Sanidhya Kashyap Locality 31/36

Need to localize shared data

HREAD 1 THREAD 2 EAD 1 THREAD 2 THREAD3
critical section

@ Critical section data is transferred for each lock acquire
@ The wait for lock increases with increasing thread count

Sanidhya Kashyap Locality

Need to localize shared data

HREAD 1 THREAD 2 EAD 1 THREAD 2 THREAD3
critical section

@ Critical section data is transferred for each lock acquire
@ The wait for lock increases with increasing thread count

Q. How can we localize shared data?

Sanidhya Kashyap Locality

Put the shared data on one core

@ Locality: Keep all shared data on one core

@ Use a server client model
o Clients send request to server (encode their critical section function)
o Server processes request on client's behalf

@ Shared data is ALWAYS accessed by one core!

Sanidhya Kashyap Locality 33/36

Data placement in NUMA machines

@ Goal: Keep application’s data close to [wloul o
the computation I | <t | Coche. cache [Cache|
e Latency is problematic for memory o Waency: 100
idth: ~28 GBps

sensitive applications
e Bandwidth is an issue for memory
Latency: 208 ns

intensive app“cations Bandwidth: ~11 GBps
DRAM

Disk

@ Allocate memory using first touch or interleaved policy
e First touch: allocating from the local node first
o Interleaved: Allocate memory using round robin

@ Use page migration during application execution (AutoNUMA)

Sanidhya Kashyap Locality 34 /36

Realizing locality at various levels

@ From caches to CPU
e Ex: data structure layout: arrays vs linked list
From one CPU to another
e HPC algorithms, synchronization primitives
@ From memory to LLC
e Ex: graph algorithms, packet processing
From one NUMA domain to another NUMA domain
o Ex: data structures, synchronization primitives (locks)
@ From SSD to memory
e Ex: Paging, out-of-core graph processing applications
From NIC to memory:
e Ex: Remote memory, paging

Sanidhya Kashyap Locality 35/36

@ Locality is one of the most important principles

e Started from virtual memory; now applicable everywhere
@ Three types of locality: temporal, spatial, network

@ Locality is applicable across the whole stack

Sanidhya Kashyap Locality 36 /36

