
Locality

Sanidhya Kashyap

POCS, Fall 2023

Sanidhya Kashyap Locality 1 / 36



Efficiency matters

Figure 1: The Line, Saudi Arabia
Sanidhya Kashyap Locality 2 / 36



Efficiency matters

Figure 2: Devices are complicated
Sanidhya Kashyap Locality 3 / 36



Outline

Principle of locality
Types of locality
Approaches that exploit locality

Caching
Prefetching
Partitioning

Locality examples
Data structure layout
Locality in locking primitives
Locality in NUMA machines

Sanidhya Kashyap Locality 4 / 36



Locality

Locality refers to the idea that interactions or effects are limited to
immediate, adjacent areas.

In computing: Locality refers to the efficiency of data access and processing

Modern computers are designed using the principle of locality
Caches, predictive loading, faster storage transfer

Sanidhya Kashyap Locality 5 / 36



Efficient data movement is all that matters

Time/energy cost: moving data
One compute unit to a storage unit (CPU ←→ memory)
One storage unit to another (disk ←→ memory)

Communication links also need spaces
Buses, networks are bottlenecks

At the end, we want to minimize data movement or have data ready when we
want to work with it

Sanidhya Kashyap Locality 6 / 36



Efficient data movement is all that matters

Time/energy cost: moving data
One compute unit to a storage unit (CPU ←→ memory)
One storage unit to another (disk ←→ memory)

Communication links also need spaces
Buses, networks are bottlenecks

At the end, we want to minimize data movement or have data ready when we
want to work with it

Sanidhya Kashyap Locality 6 / 36



Achieving efficiency becomes complicated

Fundamental limitations exists:

Packing computation and memory in a limited space

Shrinking distance among units:
Failure of Dennard scaling
Cooling is becoming an issue even with 3D chips

Sanidhya Kashyap Locality 7 / 36



An example of complexity: the memory hierarchy

Time scale for CPU to access data (or data movement latency):
L1 access: ~1ns
L2 access: ~4ns
L3 access (local): ~12-20ns
L3 access (remote): ~30-90ns
Local DRAM: ~80ns
Remote DRAM: ~130-200ns
Byte addressable non-volatile memory: ~300ns
SSD: ~2-40us
Remote machine: ~2us+
HDD: ~10ms

How do we ensure that we can keep up with this complexity?

Sanidhya Kashyap Locality 8 / 36



An example of complexity: the memory hierarchy

Time scale for CPU to access data (or data movement latency):
L1 access: ~1ns
L2 access: ~4ns
L3 access (local): ~12-20ns
L3 access (remote): ~30-90ns
Local DRAM: ~80ns
Remote DRAM: ~130-200ns
Byte addressable non-volatile memory: ~300ns
SSD: ~2-40us
Remote machine: ~2us+
HDD: ~10ms

How do we ensure that we can keep up with this complexity?

Sanidhya Kashyap Locality 8 / 36



An example from the past: The rise of virtual memory

Two-level memory hierarchies in the ATLAS computer
Main memory + auxiliary storage

Demand paging
Backbone of multi-programming

Sanidhya Kashyap Locality 9 / 36



Background: “Paging to death” → thrashing

“When it was first observed in the 1960s, thrashing was an unexpected, sudden drop in
throughput of a multiprogrammed system . . . I explained the phenomenon in 1968 and
showed that a working-set memory controller would stabilize the system . . . ”

– Peter D. Denning

Sanidhya Kashyap Locality 10 / 36



Working set model

Describes the set of information that a process needs to access in a given period
of time to carry out its information.

Model program’s memory behavior over time

Working set of a program:
Programmer’s view: Smallest collection of information present in main memory to
assure efficient execution of a program
System’s view: The set of most recently referenced pages

The working set is a reflection of the current active locality of reference for a process

Sanidhya Kashyap Locality 11 / 36



Working set model

Describes the set of information that a process needs to access in a given period
of time to carry out its information.

Model program’s memory behavior over time

Working set of a program:
Programmer’s view: Smallest collection of information present in main memory to
assure efficient execution of a program
System’s view: The set of most recently referenced pages

The working set is a reflection of the current active locality of reference for a process

Sanidhya Kashyap Locality 11 / 36



Relationship between working set and locality

Locality allows the concept of working set to be effective
Locality determines which resources are required with some degree of accuracy
Without locality, unable to predict future resource requirements

Leads to inefficient systems

Sanidhya Kashyap Locality 12 / 36



Types of locality (from parallel programming)

1 Temporal locality
2 Spatial locality
3 Network locality

Sanidhya Kashyap Locality 13 / 36



1. Temporal locality

Repeatedly access same memory locations over time period

Frequent access to sum’s memory
location illustrates temporal locality

Other examples:

Function call and recursion
Caching data

Figure 3: sum access

Sanidhya Kashyap Locality 14 / 36



2. Spatial locality

Access nearby memory locations within a small time frame

Consecutive memory access of array

Other examples:
Sequential vs random access of
storage media
Accessing memory in a row-by-row
fashion

Figure 4: array access

Sanidhya Kashyap Locality 15 / 36



3. Network locality

Access to a memory location nearby is faster than access to a memory
location that is farther

Examples:
Caches in CPUs: L1, L2, LLC
Multi-socket machines
Content delivery networks (CDNs)

Minimize the latency and bandwidth requirements by minimizing the distance for
data access

Sanidhya Kashyap Locality 16 / 36



Locality becomes important for today’s machines

Figure 5: Simplified view of a 4-socket machine

Accessing data from the local socket is faster than accessing from the remote socket
Described as non-uniform memory access (NUMA)

Sanidhya Kashyap Locality 17 / 36



Approaches using locality principle

Caching

Prefer sequential access over random access

Partitioning of data or computation

Use cases: working set, lock algorithms, out-of-core graph algorithms, distributed kv
stores

Sanidhya Kashyap Locality 18 / 36



Caching

Keep a working set of data close to the CPU that is used frequently

Ubiquitous in systems
CPU caches
MMUs: TLB
Networks (edge caches)
OS/DB buffers; storage device controller, DRAMs in storage

Sanidhya Kashyap Locality 19 / 36



One form: Sequential access

Sequential access is faster than random access

Comes from the physical properties of devices
Hard drives

Mechanically moving parts: seek time >> transfer time
Reading a byte is not cheaper than reading a page

Flash/solid state devices: only large blocks can be written
DRAM

Block addressing and transfer via the bus
TLBs (again)

Examples: write-ahead logging, block nested loop joins

Sanidhya Kashyap Locality 20 / 36



Partitioning

Splitting up the parts of resources and using divide and conquer

Decomposing an embarrassingly parallel tasks
Embarrassing parallel jobs: Do not require any synchronization

Can work independently
Decompose a large piece of the job, and process them in parallel
Ex. Map/reduce

But they are not applicable everywhere
Non-uniform distribution of access in a key-value store
Synchronizing tasks

Sanidhya Kashyap Locality 21 / 36



Partitioning

Splitting up the parts of resources and using divide and conquer

Decomposing an embarrassingly parallel tasks
Embarrassing parallel jobs: Do not require any synchronization

Can work independently
Decompose a large piece of the job, and process them in parallel
Ex. Map/reduce

But they are not applicable everywhere
Non-uniform distribution of access in a key-value store
Synchronizing tasks

Sanidhya Kashyap Locality 21 / 36



Why locality matters so much?

Locality starts impacting when the cost to access/modify/move data changes by a
huge factor.
Several scenarios to keep in mind with respect to locality:

Minimizing data movement
Caching, partitioning for parallel computation and movement
Involves either moving computation to data or moving data to the computation unit

Data layout for efficient fetching of data
Sequential vs random

Overlapping computation and data movement
Prefetching

Sanidhya Kashyap Locality 22 / 36



Examples in detail

1 Data structure layout
2 Locking primitives minimizing data movement
3 NUMA: Data structure replication and partitioning

Sanidhya Kashyap Locality 23 / 36



Data layout

When accessing memory, CPU accesses data in a way that impacts application’s
performance
Two data structures as an example:

Arrays
Tree data structure

Sanidhya Kashyap Locality 24 / 36



Arrays

Matching storage layout with the looping order of algorithms
Sequential vs random access
Example: Matrix

Stored as A11, A12, . . . , A1n, A21,
A22, A2n, . . . , Amn
Loop: for i in 1 . . . n { for j in 1 .. m
{ Aij . . . }} efficient
Loop: for j in 1 . . . m { for i in 1 .. n
{ Aij . . . }} inefficient

A11 A21 ... Am1
A12 A22 ... Am2
... ... ... ...
A1n A2n ... Amn

Align storage layout with use cases if
possible

Loop reordering in compilers
Sorting

Sanidhya Kashyap Locality 25 / 36



Locality with respect to locks
Locks are the basic building blocks for concurrent systems
Locks:

Provide mutually exclusive access to shared data
Order waiters accessing the critical section >

Lock algorithms try to minimize the movement of shared data

Figure 6: Threads going to access a file protected by a lock

Sanidhya Kashyap Locality 26 / 36



Spin locks basic behavior

Waiters wait for their turn
Locks serialize the access: Introduce sequential bottleneck

Figure 7: Basic spinlock (taken from Art of Multiprocessor Programming)

Sanidhya Kashyap Locality 27 / 36



Locks first try to minimize contention

Contention: Threads writing to the
same cache line (shared data)
Hardware maintains a consistent state
of the shared data using the
coherence protocol

Figure 8: Lock latency

TAS broadcasts to everyone of the lock situation
Saturates memory bandwidth (different from locality)

Queue lock: Maintains a queue of waiters and notify next in line without bothering
others

Minimizes shared data contention (cache line)

Sanidhya Kashyap Locality 28 / 36



Locality in locks

Let’s consider a NUMA machine
Accessing the local socket is faster than remote socket

Figure 9: Accessing in non-NUMA fashion

Sanidhya Kashyap Locality 29 / 36



Locality in locks . . .

Let’s consider a NUMA machine
Accessing the local socket is faster than remote socket

Figure 10: Accessing in NUMA fashion

Group lock waiters from one socket, process them, and then pass to another socket

Sanidhya Kashyap Locality 30 / 36



NUMA-aware lock

Comprises of multiple locks (n+1)
A global lock
NUMA node lock on each node

Figure 11: Cohort lock

Acquire: First acquire the local node lock, then acquire the global lock
Release: First release the global lock, then release the local lock
Maintain locality of data: minimize cache-line bouncing

Passes the lock within the same socket multiple times before releasing the global lock

Sanidhya Kashyap Locality 31 / 36



Need to localize shared data

Critical section data is transferred for each lock acquire
The wait for lock increases with increasing thread count

Q. How can we localize shared data?

Sanidhya Kashyap Locality 32 / 36



Need to localize shared data

Critical section data is transferred for each lock acquire
The wait for lock increases with increasing thread count

Q. How can we localize shared data?

Sanidhya Kashyap Locality 32 / 36



Put the shared data on one core

Locality: Keep all shared data on one core
Use a server client model

Clients send request to server (encode their critical section function)
Server processes request on client’s behalf

Shared data is ALWAYS accessed by one core!

Sanidhya Kashyap Locality 33 / 36



Data placement in NUMA machines

Goal: Keep application’s data close to
the computation

Latency is problematic for memory
sensitive applications
Bandwidth is an issue for memory
intensive applications

Allocate memory using first touch or interleaved policy
First touch: allocating from the local node first
Interleaved: Allocate memory using round robin

Use page migration during application execution (AutoNUMA)

Sanidhya Kashyap Locality 34 / 36



Realizing locality at various levels

From caches to CPU
Ex: data structure layout: arrays vs linked list

From one CPU to another
HPC algorithms, synchronization primitives

From memory to LLC
Ex: graph algorithms, packet processing

From one NUMA domain to another NUMA domain
Ex: data structures, synchronization primitives (locks)

From SSD to memory
Ex: Paging, out-of-core graph processing applications

From NIC to memory:
Ex: Remote memory, paging

Sanidhya Kashyap Locality 35 / 36



Summary

Locality is one of the most important principles
Started from virtual memory; now applicable everywhere

Three types of locality: temporal, spatial, network

Locality is applicable across the whole stack

Sanidhya Kashyap Locality 36 / 36


