
Homework 11
Quantum Information Processing

Exercise 1 W states, reduced density matrices, and von Neumann entropy.

The Wθ state is defined here as

|Wθ⟩ =
cos θ√

2
|100⟩+ cos θ√

2
|010⟩+ sin θ|001⟩

This and similar ones play an important role in quantum communication protocols. In this
exercise we look at a few of its properties in order to illustrate the concept of reduced density
matrix, partial trace, and von Neumann entropy. In what follows we assume that Alice, Bob
and Charlie each have a one-qubit share of the state.

a) Compute the reduced density matrices ρC and ρAB.

b) What is the dimension of these matrices, their eigenvectors and corresponding eigenvalues
of each density matrix ? Check that your results are consistent with the Schmidt theorem.

c) Compute the von Neumann entropy associated to the A and BC systems.

d) Now we want to show that the AB system is ”Bell-non-local” in the sense that ρAB

violates the Bell inequality if θ is small enough.

• Compute the average value of the Bell operator B = A⊗B+A′⊗B−A⊗B′+A′⊗B′.
Give the expression in terms of general angles α, β, α′ and β′.

Show that if (sin θ)2 <
√
2−1√
2+1

the Bell inequality is certainly violated. Hint: this
is not the best possible condition and can be obtained by a two line simple calcu-
lation (without carrying out any detailed optimization of the average value of the
Bell operator).

• Now imagine that a general bipartite system has density matrix that can be written
as a convex combination of product density matrices, i.e., ρAB =

∑
i piρ

(i)
A ⊗ ρ

(i)
B .

Such states are called ”separable”. This is the generalization of the notion of prod-
uct states introduced for pure state vectors. Mixed states that are not separable
are called ”entangled”.

Prove that for separable states we have |TrρABB| ≤ 2.

• From the above questions what can you conclude about ρAB when (sin θ)2 <
√
2−1√
2+1

?
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Remarks: For pure states (vector states) there are two situations: product states satisfy
the CHSH inequality and entangled states (i.e. non-product vector states) violate the
CHSH inequality. For density matrices the situation is richer. Separable states satisfy
the CHSH inequality, but for non-separable states the inequality may be violated or not.
When it is violated the state is said to be ”Bell-non-local” which is a strong form of
entanglement. Non-separable states that do not violate the CHSH inequality are still
entangled but this is a weaker form of entanglement (for example you cannot use them
for a simple Ekert-like protocol).

The standard W state has sin θ = cos θ√
2

= 1√
3

leads to a ρAB that can be shown to not
violate the CHSH inequality but is non-separable (entangled).

Exercise 2 Dynamics of 1-qubit density matrix

In class we showed that the general form of a 1-qubit density matrix is

ρ =
1

2
(I + a⃗ · σ⃗)

where a⃗ = ax, ay, az) is a vector in the unit three dimensional ball (the Bloch ball) ∥a⃗∥ ≤ 1
and σ⃗ = (σx, σy, σz) are the three usual Pauli matrices. Consider the dynamics of this mixed
state generated by the Hamiltonian of the qubit in a static plus rotating magnetic field in the
rotating frame (as seen in class, ω1 ∝ the strength of the rotating field and and δ = ω − ω0

the detuning between the Larmor and rotating field frequencies)

H =
ℏδ
2
σz −

ℏω1

2
σx

a) Show that the density matrix at time t is of the form

ρt =
1

2
(I + a⃗(t) · σ⃗)

and compute the vector a⃗(t). Hint: From the definition of the density matrix you can
infer that

ρt = UtρU
†
t

with Ut the evolution operator.

b) Check that ∥a⃗(t)∥ = ∥a⃗∥. So the vector a⃗(t) evolves on a sphere (inside the Bloch ball)
of radius given by the initial vector.

c) Find a simple proof of the last statement without ever computing a⃗(t).
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Exercise 3 IBM Quantum Composer

This exercise allows you to familiarize yourself with the IBM Q experience website, their
graphical interface, the Qiskit language, simulators and NISQ devices. You will find many
tutorials on IBM Q. It is important for you to familiarize yourself in order to solve the
mini-project (graded) that we will distribute next week.

a) Create an IBM account and sign-in in IBM-Composer. You can find some tutorials and
documentation at the following address.

b) Design your first circuit with a simple qubit initialized at |0⟩ followed by a Hadamard
gate and a measurement stored on one classical bit.

Click on the ”Setup and run” button, and select a ”system” device or a ”simulator”. A
job will be sent to an IBM device, and the status of the computation can be checked on
the left panel of the interface. What result do you get?

c) Now design a circuit with two Hadamard gates. Because H2 = I, you know that the
system should go back to its previous initial state |0⟩ (as illustrated with the double
beam-splitter interferometer at the beginning of the course). Check that this is the case.

d) Add an interference with a second qubit with a control-not gate as follow:

From the point of view of the first qubit, this can also be understood as effectively
entangling it with the ”environment”. Run the circuit, compare the results with the
previous question. How does it affect the system?

e) Remove the last Hadamard gate and add a measurement on the second qubit. What do
you obtain and why?

f) Now it is your turn to create a circuit to illustrate the w-state |W ⟩ seen in the course.
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https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/composer/docs/iqx/

