
Quantum Information Processing

Solution Homework 10

Exercise 1 Product states and CSHS inequality

a) The possible outcomes are the following four cases:

• 1)
|α⟩ ⊗ |β⟩, a = 1, b = 1, p(1, 1|α, β) = |⟨α|φA⟩|2|⟨β|φB⟩|2

Considering the measurement only in Alice’s lab: pA(1|α) = |⟨α|φA⟩|2. Considering
the measurement only in Bob’s lab: pB(1|β) = |⟨β|φB⟩|2.

• 2)
|α⟩ ⊗ |β⊥⟩, a = 1, b = −1, p(1,−1|α, β) = |⟨α|φA⟩|2|⟨β⊥|φB⟩|2

Considering the measurement only in Alice’s lab: pA(1|α) = |⟨α|φA⟩|2. Considering
the measurement only in Bob’s lab: pB(−1|β) = |⟨β⊥|φB⟩|2.

• 3)
|α⊥⟩ ⊗ |β⟩, a = −1, b = 1, p(−1, 1|α, β) = |⟨α⊥|φA⟩|2|⟨β|φB⟩|2

Considering the measurement only in Alice’s lab: pA(−1|α⊥) = |⟨α⊥|φA⟩|2. Con-
sidering the measurement only in Bob’s lab: pB(1|β) = |⟨β|φB⟩|2.

• 4)

|α⊥⟩ ⊗ |β⊥⟩, a = −1, b = −1, p(−1,−1|α, β) = |⟨α⊥|φA⟩|2|⟨β⊥|φB⟩|2

Considering the measurement only in Alice’s lab: pA(−1|α⊥) = |⟨α⊥|φA⟩|2. Con-
sidering the measurement only in Bob’s lab: pB(−1|β) = |⟨β⊥|φB⟩|2.

b) Since the locality assumption is satisfied as shown above i.e p(a, b|α, β) = pA(a|α)pB(b|β),
as well as for all other choices of angles, we can proceed as with the analysis of hidden
variable theories to prove that |X| ≤ 2 (here there is no hidden variable or if you wish
the distribution is q(λ) = δ(λ) the delta distribution at λ = 0).

Exercise 2 The difference between a Bell state and a statistical mixture of |00⟩, |11⟩

a) For the Bell state the density matrix is simply

ρBell = |B00⟩⟨B00| =
1

2
(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|)

In array form

ρBell =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


Note this is a rank one matrix as it should since ρBell is a rank one projector with
eigenvalues 1 and 0, 0, 0. We also check TrρBell = 1.
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b) For the statistical mixture we have

ρstat =
1

2
|00⟩⟨00|+ 1

2
|11⟩⟨11|

In array form

ρstat =
1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


Note this is a rank two matrix as it should since ρBell is a rank one projector with
eigenvalues 1, 0, 0, 1. We also check Trρstat = 1.

c) In the Bell state the average of the observable B is

Tr(BρBell) = Tr(B|B00⟩⟨B00|) = Tr⟨B00|B|B00⟩ = ⟨B00|B|B00⟩

The expression as a function of angles is calulated in the course

cos 2(α− β) + cos 2(α− β′)− cos 2(α′ − β) + cos 2(α′ − β′)

and for the optimal choice of angles the values is 2
√
2.

In the statistical state we have by linearity and cyclicity of the trace

Tr(Bρstat) =
1

2
⟨00|B|00⟩+ 1

2
⟨11|B|11⟩

For A⊗ B we get the contribution

1

2
⟨0|A|0⟩⟨0|B|0⟩+ 1

2
⟨1|A|1⟩⟨1|B|1⟩ = (cos2 α− sin2 α)(cos2 β − sin2 β) = cos 2α cos 2β

So for the correlation coefficient we have

Tr(Bρstat) = cos 2α cos 2β + cos 2α cos 2β′ − cos 2α′ cos 2β + cos 2α′ cos 2β′

For the optimal angles of CSHS we find
√
2. Note that it is possible to prove this

expression can never be greater than 2.

Exercise 3 Ekert 1991 protocol

a) When Alice and Bob use the same basis i.e., (α = 0, β′′ = 0) or (α′′ = −π
8
, β′ = −π

8
),

the measurement outcome is the same on both sides. So they get common bits a = b′′ or
a′′ = b′. This happens on average 2N/9 times.

b) Alice and Bob perform their sets of N measurements each. They keep the outcomes
secret. After measurements are finished they reveal publicly the choices of basis. They
retain for the one-time pad only the bits corresponding to the same basis choices. The
average length of the one time pad is then 2N/9.
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c) For the security test Alice and Bob take all events when the basis choices are the 4
Bell/CSHS choices involving angles α, α′, β, β ′ and compute the correlation coefficient. If
there is no eavesdropper they should find 2

√
2 (in an ideal noiseless situation).

d) The possible values of γ are the α’s and α⊥’s (so 6 possible values). Similarly for δ the
possible values are β’s and β⊥’s (so 6 possible values).
Since the eaves dropper leaves the state in a product state from the first exercise it follows
that −2 ≤ X ≤ 2. This is seprated by a sizable gap from 2

√
2 so the eavesdropper is

detected.
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