Quantum Information Processing

Solution Homework 10

Exercise 1 Product states and CSHS inequality

a) The possible outcomes are the following four cases:

- 1)

$$
|\alpha\rangle \otimes|\beta\rangle, \quad a=1, b=1, \quad p(1,1 \mid \alpha, \beta)=\left|\left\langle\alpha \mid \varphi_{A}\right\rangle\right|^{2}\left|\left\langle\beta \mid \varphi_{B}\right\rangle\right|^{2}
$$

Considering the measurement only in Alice's lab: $p_{A}(1 \mid \alpha)=\left|\left\langle\alpha \mid \varphi_{A}\right\rangle\right|^{2}$. Considering the measurement only in Bob's lab: $p_{B}(1 \mid \beta)=\left|\left\langle\beta \mid \varphi_{B}\right\rangle\right|^{2}$.

- 2)

$$
|\alpha\rangle \otimes\left|\beta_{\perp}\right\rangle, \quad a=1, b=-1, \quad p(1,-1 \mid \alpha, \beta)=\left|\left\langle\alpha \mid \varphi_{A}\right\rangle\right|^{2}\left|\left\langle\beta_{\perp} \mid \varphi_{B}\right\rangle\right|^{2}
$$

Considering the measurement only in Alice's lab: $p_{A}(1 \mid \alpha)=\left|\left\langle\alpha \mid \varphi_{A}\right\rangle\right|^{2}$. Considering the measurement only in Bob's lab: $p_{B}(-1 \mid \beta)=\left|\left\langle\beta_{\perp} \mid \varphi_{B}\right\rangle\right|^{2}$.

- 3)

$$
\left|\alpha_{\perp}\right\rangle \otimes|\beta\rangle, \quad a=-1, b=1, \quad p(-1,1 \mid \alpha, \beta)=\left|\left\langle\alpha_{\perp} \mid \varphi_{A}\right\rangle\right|^{2}\left|\left\langle\beta \mid \varphi_{B}\right\rangle\right|^{2}
$$

Considering the measurement only in Alice's lab: $p_{A}\left(-1 \mid \alpha_{\perp}\right)=\left|\left\langle\alpha_{\perp} \mid \varphi_{A}\right\rangle\right|^{2}$. Considering the measurement only in Bob's lab: $p_{B}(1 \mid \beta)=\left|\left\langle\beta \mid \varphi_{B}\right\rangle\right|^{2}$.

- 4)

$$
\left|\alpha_{\perp}\right\rangle \otimes\left|\beta_{\perp}\right\rangle, \quad a=-1, b=-1, \quad p(-1,-1 \mid \alpha, \beta)=\left|\left\langle\alpha_{\perp} \mid \varphi_{A}\right\rangle\right|^{2}\left|\left\langle\beta_{\perp} \mid \varphi_{B}\right\rangle\right|^{2}
$$

Considering the measurement only in Alice's lab: $p_{A}\left(-1 \mid \alpha_{\perp}\right)=\left|\left\langle\alpha_{\perp} \mid \varphi_{A}\right\rangle\right|^{2}$. Considering the measurement only in Bob's lab: $p_{B}(-1 \mid \beta)=\left|\left\langle\beta_{\perp} \mid \varphi_{B}\right\rangle\right|^{2}$.
b) Since the locality assumption is satisfied as shown above i.e $p(a, b \mid \alpha, \beta)=p_{A}(a \mid \alpha) p_{B}(b \mid \beta)$, as well as for all other choices of angles, we can proceed as with the analysis of hidden variable theories to prove that $|X| \leq 2$ (here there is no hidden variable or if you wish the distribution is $q(\lambda)=\delta(\lambda)$ the delta distribution at $\lambda=0$).

Exercise 2 The difference between a Bell state and a statistical mixture of $|00\rangle,|11\rangle$
a) For the Bell state the density matrix is simply

$$
\rho_{\text {Bell }}=\left|B_{00}\right\rangle\left\langle B_{00}\right|=\frac{1}{2}(|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11|)
$$

In array form

$$
\rho_{\text {Bell }}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Note this is a rank one matrix as it should since $\rho_{\text {Bell }}$ is a rank one projector with eigenvalues 1 and $0,0,0$. We also check $\operatorname{Tr} \rho_{\text {Bell }}=1$.
b) For the statistical mixture we have

$$
\rho_{\text {stat }}=\frac{1}{2}|00\rangle\langle 00|+\frac{1}{2}|11\rangle\langle 11|
$$

In array form

$$
\rho_{\text {stat }}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Note this is a rank two matrix as it should since $\rho_{\text {Bell }}$ is a rank one projector with eigenvalues $1,0,0,1$. We also check $\operatorname{Tr} \rho_{\text {stat }}=1$.
c) In the Bell state the average of the observable \mathcal{B} is

$$
\operatorname{Tr}\left(\mathcal{B} \rho_{\text {Bell }}\right)=\operatorname{Tr}\left(\mathcal{B}\left|B_{00}\right\rangle\left\langle B_{00}\right|\right)=\operatorname{Tr}\left\langle B_{00}\right| \mathcal{B}\left|B_{00}\right\rangle=\left\langle B_{00}\right| \mathcal{B}\left|B_{00}\right\rangle
$$

The expression as a function of angles is calulated in the course

$$
\cos 2(\alpha-\beta)+\cos 2\left(\alpha-\beta^{\prime}\right)-\cos 2\left(\alpha^{\prime}-\beta\right)+\cos 2\left(\alpha^{\prime}-\beta^{\prime}\right)
$$

and for the optimal choice of angles the values is $2 \sqrt{2}$.
In the statistical state we have by linearity and cyclicity of the trace

$$
\operatorname{Tr}\left(\mathcal{B} \rho_{\text {stat }}\right)=\frac{1}{2}\langle 00| \mathcal{B}|00\rangle+\frac{1}{2}\langle 11| \mathcal{B}|11\rangle
$$

For $A \otimes B$ we get the contribution

$$
\frac{1}{2}\langle 0| A|0\rangle\langle 0| B|0\rangle+\frac{1}{2}\langle 1| A|1\rangle\langle 1| B|1\rangle=\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)\left(\cos ^{2} \beta-\sin ^{2} \beta\right)=\cos 2 \alpha \cos 2 \beta
$$

So for the correlation coefficient we have

$$
\operatorname{Tr}\left(\mathcal{B} \rho_{\text {stat }}\right)=\cos 2 \alpha \cos 2 \beta+\cos 2 \alpha \cos 2 \beta^{\prime}-\cos 2 \alpha^{\prime} \cos 2 \beta+\cos 2 \alpha^{\prime} \cos 2 \beta^{\prime}
$$

For the optimal angles of CSHS we find $\sqrt{2}$. Note that it is possible to prove this expression can never be greater than 2 .

Exercise 3 Ekert 1991 protocol

a) When Alice and Bob use the same basis i.e., $\left(\alpha=0, \beta^{\prime \prime}=0\right)$ or $\left(\alpha^{\prime \prime}=-\frac{\pi}{8}, \beta^{\prime}=-\frac{\pi}{8}\right)$, the measurement outcome is the same on both sides. So they get common bits $a=b^{\prime \prime}$ or $a^{\prime \prime}=b^{\prime}$. This happens on average $2 N / 9$ times.
b) Alice and Bob perform their sets of N measurements each. They keep the outcomes secret. After measurements are finished they reveal publicly the choices of basis. They retain for the one-time pad only the bits corresponding to the same basis choices. The average length of the one time pad is then $2 N / 9$.
c) For the security test Alice and Bob take all events when the basis choices are the 4 Bell/CSHS choices involving angles $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}$ and compute the correlation coefficient. If there is no eavesdropper they should find $2 \sqrt{2}$ (in an ideal noiseless situation).
d) The possible values of γ are the α 's and α_{\perp} 's (so 6 possible values). Similarly for δ the possible values are β^{\prime} 's and β_{\perp} 's (so 6 possible values).
Since the eaves dropper leaves the state in a product state from the first exercise it follows that $-2 \leq X \leq 2$. This is seprated by a sizable gap from $2 \sqrt{2}$ so the eavesdropper is detected.

