Exercise 1 Bell states

1) One has to show that $\left\langle B_{x, y} \mid B_{x^{\prime}, y^{\prime}}\right\rangle=\delta_{x, x^{\prime}} \delta_{y, y^{\prime}}$. We show it explicitly for two cases:

$$
\begin{aligned}
\left\langle B_{00} \mid B_{00}\right\rangle & =\frac{1}{2}(\langle 00|+\langle 11|)(|00\rangle+|11\rangle) \\
& =\frac{1}{2}(\langle 00 \mid 00\rangle+\langle 00 \mid 11\rangle+\langle 11 \mid 00\rangle+\langle 11 \mid 11\rangle)
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& \langle 00 \mid 00\rangle=\langle 0 \mid 0\rangle\langle 0 \mid 0\rangle=1,\langle 00 \mid 11\rangle=\langle 0 \mid 1\rangle\langle 0 \mid 1\rangle=0 \\
& \langle 11 \mid 00\rangle=\langle 1 \mid 0\rangle\langle 1 \mid 0\rangle=0,\langle 11 \mid 11\rangle=\langle 1 \mid 1\rangle\langle 1 \mid 1\rangle=1
\end{aligned}
$$

Thus we get that $\left\langle B_{00} \mid B_{00}\right\rangle=\frac{1}{2}(1+0+0+1)=1$. Now let us consider

$$
\begin{aligned}
\left\langle B_{00} \mid B_{01}\right\rangle & =\frac{1}{2}(\langle 00|+\langle 11|)(|01\rangle+|10\rangle) \\
& =\frac{1}{2}(\langle 00 \mid 01\rangle+\langle 00 \mid 10\rangle+\langle 11 \mid 01\rangle+\langle 11 \mid 10\rangle) \\
& =\frac{1}{2}(0+0+0+0)=0 .
\end{aligned}
$$

2) The proof is by contradiction. Suppose there exists a_{1}, b_{1} and a_{2}, b_{2} such that

$$
\left|B_{00}\right\rangle=\left(a_{1}|0\rangle+b_{1}|1\rangle\right) \otimes\left(a_{2}|0\rangle+b_{2}|1\rangle\right) .
$$

Then we have

$$
\frac{1}{2}(|00\rangle+|11\rangle)=a_{1} a_{2}|00\rangle+a_{1} b_{2}|01\rangle+b_{1} a_{2}|10\rangle+a_{2} b_{2}|11\rangle
$$

Comparing the coefficients of the orthornormal basis, one has

$$
\frac{1}{2}=a_{1} a_{2}, \frac{1}{2}=b_{1} b_{2}, a_{1} b_{2}=0, b_{1} a_{2}=0
$$

The third equality indicates that either $a_{1}=0$ or $b_{2}=0$ (or both). If $a_{1}=0$ we get a contradiction with the first equation. If on the other hand $b_{2}=0$, we get a contradiction with the second one. Therefore, there does not exist $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ such that $\left|B_{00}\right\rangle$ can be written as $\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$. Therefore, B_{00} is entangled.
3) We have

$$
\begin{aligned}
|\gamma\rangle \otimes|\gamma\rangle & =(\cos (\gamma)|0\rangle+\sin (\gamma)|1\rangle) \otimes(\cos (\gamma)|0\rangle+\sin (\gamma)|1\rangle) \\
& =\cos ^{2}(\gamma)|00\rangle+\cos (\gamma) \sin (\gamma)|01\rangle+\sin (\gamma) \cos (\gamma)|10\rangle+\sin ^{2}(\gamma)|11\rangle
\end{aligned}
$$

Similarly, we have

$$
\left|\gamma_{\perp}\right\rangle \otimes\left|\gamma_{\perp}\right\rangle==\sin ^{2}(\gamma)|00\rangle-\cos (\gamma) \sin (\gamma)|01\rangle-\sin (\gamma) \cos (\gamma)|10\rangle+\cos ^{2}(\gamma)|11\rangle
$$

Combining the two terms, we find that

$$
\begin{aligned}
|\gamma\rangle \otimes|\gamma\rangle+\left|\gamma_{\perp}\right\rangle \otimes\left|\gamma_{\perp}\right\rangle & =\left(\cos ^{2}(\gamma)+\sin ^{2}(\gamma)\right)|00\rangle+\left(\sin ^{2}(\gamma)+\cos ^{2}(\gamma)\right)|11\rangle \\
& =|00\rangle+|11\rangle
\end{aligned}
$$

and thus

$$
\frac{1}{\sqrt{2}}\left(|\gamma\rangle \otimes|\gamma\rangle+\left|\gamma_{\perp}\right\rangle \otimes\left|\gamma_{\perp}\right\rangle\right)=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left|B_{00}\right\rangle
$$

4) From the rule of the tensor product

$$
\binom{a}{b} \otimes\binom{c}{d}=\binom{a\binom{c}{d}}{b\binom{c}{d}}=\left(\begin{array}{l}
a c \\
a d \\
b c \\
b d
\end{array}\right)
$$

we obtain the basis states as

$$
\begin{array}{ll}
|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), & |0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \\
|1\rangle \otimes|0\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), & |1\rangle \otimes|1\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{array}
$$

Thus, we have

$$
\begin{array}{ll}
\left|B_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right), & \left|B_{01}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
1 \\
0
\end{array}\right), \\
\left|B_{10}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right), & \left|B_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right) .
\end{array}
$$

Exercise 2 Entanglement by unitary operations

1) By definition of the tensor product:

$$
(H \otimes I)|x\rangle \otimes|y\rangle=H|x\rangle \otimes I|y\rangle=H|x\rangle \otimes|y\rangle .
$$

Also, one can use that $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ to show that always

$$
H|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right)
$$

Thus,

$$
(H \otimes I)|x\rangle \otimes|y\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle \otimes|y\rangle+(-1)^{x}|1\rangle \otimes|y\rangle\right) .
$$

Now we apply CNOT. By linearity, we can apply it to each term separately. Thus,

$$
\begin{aligned}
(\mathrm{CNOT})(H \otimes I)|x\rangle \otimes|y\rangle & =\frac{1}{\sqrt{2}}\left((C N O T)|0\rangle \otimes|y\rangle+(-1)^{x}(\mathrm{CNOT})|1\rangle \otimes|y\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(|0\rangle \otimes|y\rangle+(-1)^{x}|1\rangle \otimes|y \oplus 1\rangle\right) \\
& =\left|B_{x y}\right\rangle
\end{aligned}
$$

2) Let us first start with $H \otimes I$. We use the rule

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \otimes\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{llll}
a e & a f & b e & b f \\
a g & a h & b g & b h \\
c e & c f & d e & d f \\
c g & c h & d g & d h
\end{array}\right)
$$

Thus we have

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)
$$

For CNOT, we use the definition:

$$
(\mathrm{CNOT})|x\rangle \otimes|y\rangle=|x\rangle \otimes|y \oplus x\rangle
$$

which implies that the matrix elements are

$$
\left\langle x^{\prime} y^{\prime}\right| \mathrm{CNOT}|x y\rangle=\left\langle x^{\prime}, y^{\prime} \mid x, y \otimes x\right\rangle=\left\langle x^{\prime} \mid x\right\rangle\left\langle y^{\prime} \mid y \oplus x\right\rangle=\delta_{x x^{\prime}} \delta_{y \oplus x, y^{\prime}}
$$

We obtain the following table with columns $x y$ and rows $x^{\prime} y^{\prime}$:

	00	01	10	11
00	1	0	0	0
01	0	1	0	0
10	0	0	0	1
11	0	0	1	0

For the matrix product $(\mathrm{CNOT})(H \otimes I)$, we find that

$$
\begin{aligned}
(\mathrm{CNOT}) H \otimes I & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & 0 \\
0 & X
\end{array}\right)\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right) \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
X & -X
\end{array}\right),
\end{aligned}
$$

where $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Thus,

$$
(C N O T)(H \otimes I)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0
\end{array}\right)
$$

One can check that for example $\left|B_{00}\right\rangle=(\mathrm{CNOT})(H \otimes I)|0\rangle \otimes|0\rangle$. Finally to check the unitarity, we have to check that $U U^{\dagger}=U^{\dagger} U=I$ for $U=H \otimes I$, CNOT and $(\mathrm{CNOT})(H \otimes I)$. We leave this to the reader.
3) Let $U=(\mathrm{CNOT})(H \otimes I)$. We have

$$
\left|B_{x y}\right\rangle=U|x\rangle \otimes|y\rangle,\left\langle B_{x^{\prime} y^{\prime}}\right|=\left\langle x^{\prime}\right| \otimes\left\langle y^{\prime}\right| U^{\dagger}
$$

Thus,

$$
\begin{aligned}
\left\langle B_{x^{\prime} y^{\prime}} \mid B_{x y}\right\rangle & =\left\langle x^{\prime}\right| \otimes\left\langle y^{\prime}\right| U^{\dagger} U|x\rangle \otimes|y\rangle \\
& =\left\langle x^{\prime}\right| \otimes\left\langle y^{\prime}\right| I|x\rangle \otimes|y\rangle \\
& =\left\langle x^{\prime} \mid x\right\rangle\left\langle y^{\prime} \mid y\right\rangle=\delta_{x x^{\prime}} \delta_{y y^{\prime}} .
\end{aligned}
$$

Exercise 3 Tsirelson bound

1) Since the eigenvalues of A are ± 1, those of A^{2} are both +1 . The eigenvectors are the same. Thus we have $A^{2}=|\alpha\rangle\langle\alpha|+\left|\alpha_{\perp}\right\rangle\left\langle\alpha_{\perp}\right|=I_{A}$ and similarly for the other matrices. The same result can also be obtained by expanding the product A^{2} in Dirac notation or in matrix component form...

Now expanding \mathcal{B}^{2} we get the squared terms of the type $(A \otimes B)^{2}=(A \otimes B)(A \otimes B)=$ $A^{2} \otimes B^{2}=I_{A} \otimes I_{B}$. This will yield the term $4 I_{A} \otimes I_{B}$.
Then for the cross terms using $\left(M_{1} \otimes M_{2}\right)\left(N_{1} \otimes N_{2}\right)=M_{1} N_{1} \otimes M_{2} N_{2}$ we end up with 4 contributions that dont cancel each other and can be rearranged into the commutator term $\left[A, A^{\prime}\right] \otimes\left[B, B^{\prime}\right]$.
2) From the identity we have

$$
\begin{aligned}
\langle\Psi| \mathcal{B}^{2}|\Psi\rangle & =4-\langle\Psi|\left[A, A^{\prime}\right] \otimes\left[B, B^{\prime}\right]|\Psi\rangle \\
& \left.\leq 4+\left|\langle\Psi|\left[A, A^{\prime}\right] \otimes\left[B, B^{\prime}\right]\right| \Psi\right\rangle \mid
\end{aligned}
$$

Now we must prove that the last term on the right-hand-side is less or equal to 4. Using the hint and Cauchy-Schwarz

$$
\left.\left.\left|\langle\Psi|\left[A, A^{\prime}\right] \otimes\left[B, B^{\prime}\right]\right| \Psi\right\rangle\left|\leq \|\left[A, A^{\prime}\right] \otimes I_{B}\right| \Psi\right\rangle\left\|\| I_{A} \otimes\left[B, B^{\prime}\right] \Psi\right\rangle \|
$$

To estimate each norm on the right-hand-side we first use the triangle inequality

$$
\|\left[A, A^{\prime}\right] \otimes I_{B}|\Psi\rangle\|\leq\| A A^{\prime} \otimes I_{B}|\Psi\rangle\|+\| A^{\prime} A \otimes I_{B}|\Psi\rangle \|
$$

and then

$$
\begin{align*}
\| A A^{\prime} \otimes I_{B}|\Psi\rangle \|^{2} & =\langle\Psi|\left(A A^{\prime} \otimes I_{B}\right)^{\dagger}\left(A A^{\prime} \otimes I_{B}\right)|\Psi\rangle \\
& =\langle\Psi|\left(A^{\prime} A \otimes I_{B}\right)\left(A A^{\prime} \otimes I_{B}\right)|\Psi\rangle \\
& =\langle\Psi| A^{\prime} A^{2} A^{\prime} \otimes I_{B}^{2}|\Psi\rangle \\
& =\langle\Psi| A^{\prime 2} \otimes I_{B}|\Psi\rangle \\
& =\langle\Psi| I_{A} \otimes I_{B}|\Psi\rangle=1 \tag{1}
\end{align*}
$$

From which we deduce that the right-hand-side of the last inequality above equals $1+1=$ 2. Thus

$$
\|\left[A, A^{\prime}\right] \otimes I_{B}|\Psi\rangle \| \leq 2
$$

and

$$
\left.\left|\langle\Psi|\left[A, A^{\prime}\right] \otimes\left[B, B^{\prime}\right]\right| \Psi\right\rangle \mid \leq 4
$$

which completes the proof.
3) This last result can be justified from Cauchy-Schwarz:

$$
\langle\Psi| \mathcal{B}|\Psi\rangle^{2} \leq \||\Psi\rangle\left\|^{2}\right\| \mathcal{B}|\Psi\rangle \|^{2}=\langle\Psi| \mathcal{B}^{2}|\Psi\rangle
$$

Since we proved before that teh r.h.s is less or equal to 8 we get Tsirelson's bound for any state

$$
\langle\Psi| \mathcal{B}|\Psi\rangle \leq 2 \sqrt{2}
$$

Note that the Bell state saturates the bound.

