
Markov Chains and Algorithmic Applications - IC - EPFL

Solutions 9

1. Because of the assumptions made, aij > 0 if ψij > 0, so the chain with transition probabilities
pij is also irreducible and aperiodic, therefore ergodic, as the state space S is finite. Let us check
the detailed balance equation:

πi pij = πi ψij aij =
πi ψij πj ψji
πj ψji + πi ψij

which is clearly symmetric in i and j, and therefore equal to πj pji.

2. Note that the base chain is clearly irreducible, but is not aperiodic. This is not an issue
however, as for any distribution π which is not uniform on S (and such a distribution does not
exist on S = N∗), the Metropolis chain will have a self-loop and therefore be aperiodic. Besides,
the matrix ψ satisfies the condition ψij > 0 if and only if ψji > 0.

a) The computation gives:

a1,2 = min

(
1,
π2 ψ2,1

π1 ψ1,2

)
=

π2
2π1

and a2,1 = min

(
1,
π1 ψ1,2

π2 ψ2,1

)
= 1

and for i ≥ 2:

ai+1,i = min(1, πi/πi+1) = 1 and ai,i+1 = min(1, πi+1/πi) = πi+1/πi

Correspondingly, we obtain (i ≥ 2 below):

p1,1 = 1− π2
2π1

, p1,2 =
π2
2π1

, pi,i−1 =
1

2
, pi,i =

1

2
(1− πi+1/πi) and pi,i+1 =

1

2
πi+1/πi

b) 1. We obtain in this case (for i ≥ 2)

ai,i−1 = 1 and ai,i+1 = πi+1/πi = i2/(i+ 1)2, so lim
i→∞

ai,i+1 = 1

2. We obtain in this case (for i ≥ 2)

ai,i−1 = 1 and ai,i+1 = πi+1/πi = e−1 so lim
i→∞

ai,i+1 = e−1

3. We obtain in this case (for i ≥ 2)

ai,i−1 = 1 and ai,i+1 = πi+1/πi = e−(i+1)2−i2 = e−2i−1 so lim
i→∞

ai,i+1 = 0

Observe also that in each case, the normalization constant C disappears and need therefore not be
computed in order to run the Metropolis algorithm (but of course, in these cases, the computation
of C is not a huge problem. . . ).
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3. The base chain must be irreducible and aperiodic, and such that ψij > 0 if and only if ψji > 0.
There are of course many possible choice for ψ. The symmetric random walk on {0, . . . , n}

ψij =


1/2, if |i− j| = 1

1/2, if i = j = 0 or i = j = n

0, otherwise

is a simple choice. The acceptance probabilities are then given by

aij =

{
min

(
1,

πj
πi

)
, if |i− j| = 1

0, otherwise

Computing these exactly using the probability mass function of the binomial distribution, we get

aij =


min

(
1,

( n
i+1)p

i+1(1−p)n−i−1

(ni)pi(1−p)n−i

)
= min

(
1, (n−i)p

(i+1)(1−p)

)
, if j = i+ 1

min

(
1,

( n
i−1)p

i−1(1−p)n−i+1

(ni)pi(1−p)n−i

)
= min

(
1, i(1−p)

(n−i+1)p

)
, if j = i− 1

0, otherwise

Again, we observe here that the factorials which enter into the binomial coefficients
(
n
i

)
need not

to be computed in order to run the Metropolis algorithm. Further computations show that the
Metropolis chain favors moves towards the maximum of the distribution, which is located around
np, over moves that go in the other direction: e.g., if i = nq, with q < p, then

ai,i+1 = 1 and ai,i−1 '
nq(1− p)
n(1− q)p

=
q(1− p)
(1− q)p

< 1, as q < p

4. First note that Z = 1−θN
1−θ '

1
1−θ for large N .

a) The weights defined in class are given in this case by wi = πi
ψi

= N
Z θ

i−1, so that for j 6= i:

aij = min

(
1,
wj
wi

)
= min

(
1, θj−i

)
=

{
1 if j < i

θj−i if j > i

which leads to

pij =


1
N if j < i
1
N θj−i if j > i
1
N + 1

N

∑N
k=i+1

(
1− θk−i

)
if j = i

b) From the course, we know that

‖Pni − π‖
TV ≤ λn∗

2
√
πi

where

λ∗ = 1− 1

w∗
and w∗ = max

i∈S
wi = w1 =

N

Z

We conclude therefore that

‖Pni − π‖TV ≤
√
Z

2
√
θi−1

(
1− Z

N

)n
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For i = 1 and large N , this bound leads to:

‖Pn1 − π‖TV ≤
1

2
√

1− θ
exp

(
− n

N(1− θ)

)
while for i = N and large N , this bound leads to:

‖PnN − π‖TV ≤
1

2
√

(1− θ) θN−1
exp

(
− n

N(1− θ)

)
=

1

2
√

1− θ
exp

(
N − 1

2
log(1/θ)− n

N(1− θ)

)
c) Because of the last estimate, in order for maxi∈S ‖Pni − π‖TV to be smaller than ε, we need that
n� N2, which gives the desired upper bound on the mixing time. What can actually be shown in
this case (but this was not asked) is the following: using the more precise estimate

‖Pni − π‖TV ≤
1

2

√√√√N−1∑
k=1

λ2nk

(
φ
(k)
i

)2
we find that this quantity is small (uniformly in i) for n� N already.

3


