
1

Lazy and Speculative Execution

Butler Lampson
Microsoft Research

International Conference on Functional Programming
22 September 2008

21 September 2008 Lampson: Lazy and Speculative Execution 2

Why This Talk?

 A way to think about system design
 Could I do this lazily/speculatively?
 When would it pay?

 Steps toward a sound theory of laziness or
speculation
 I am not presenting such a theory

21 September 2008 Lampson: Lazy and Speculative Execution 3

Lazy Evaluation

 Well studied in programming languages
 Though not much used
 Lazy vs. eager/strict
 Examples:

▬ Algol 60 call by name
▬ Lazy is the default in Haskell
▬ By hand: wrap the lazy part in a lambda

 May affect semantics
▬ Side effects—usually not allowed
▬ Free variables, e.g. in call by name
▬ Termination even in purely functional languages

21 September 2008 Lampson: Lazy and Speculative Execution 4

Lazy Execution in Systems

 Widely used in systems
 Though not much studied

 The main idea: defer work that may not be needed
▬ Deferred work: a closure, or a program you write

 Pays in lower latency (because of reordering)
 Allows more concurrency (if you have extra

resources)
 Pays in less work (if result is never needed)

 Faster with limited resources
 A few examples:

 Carry-save adder: use two numbers to represent one
 Write buffer: defer writes from processor to memory
 Redo logging: use log only after a crash

21 September 2008 Lampson: Lazy and Speculative Execution 5

Speculative Execution in Systems

 Widely used in processors, and less widely in
other systems

 The main idea: Do work that may not be needed
 Pays in more concurrency (if you have extra resources)

 Costs in extra work (if result is never used)

 Faster with excess resources
 A few examples

 Prefetching in memory and file systems
 Branch prediction
 Optimistic concurrency control in databases

21 September 2008 Lampson: Lazy and Speculative Execution 6

How? Reordering

 A special case of concurrency
 Usual constraint: Don’t change the semantics

 There are some exceptions
 Issues

 Correctness : Do reordered parts commute
 Performance : Scheduling
 Representation of reordered work

21 September 2008 Lampson: Lazy and Speculative Execution 7

Reordering

Lazy
t:=L; !A; !B(t) !A; !B(L) A latency only

t:=L; !A; !B(t) t:=L ||!A; !B(t) with concurrency

t:=L; !A; !B(t) !A; !B(L) A latency only

Speculative
!A; ifc →!B(S) t:=S || !A; if c →!B(t) B latency only

!A; ifc →!B(S) t:=S1|| !A; if c →!B(S2(t)) more general

or less work, you bet on the conditional, if c
! marks actions that have output/side effects

21 September 2008 Lampson: Lazy and Speculative Execution 8

Reordering With Concurrency

Lazy
t:=L; !A; !B(t) !A; !B(L) A latency only

t:=L; !A; !B(t) t:=L || !A; !B(t) with concurrency

Speculative
!A; ifc →!B(S) t:=S || !A; if c →!B(t) B latency only

more work if ~c

For less work, you bet on the conditional, if c
! marks actions that have output/side effects

21 September 2008 Lampson: Lazy and Speculative Execution 9

Reordering and Conditionals

Lazy
t:=L; !A; !B(t) !A; !B(L) A latency only

t:=L; !A; if c →!B(t) !A; if c →!B(L) less work if ~c

Speculative
!A; ifc →!B(S) t:=S || !A; if c →!B(t) B latency only

more work if ~c

 For less work, you bet on the conditional, if c
! marks actions that have output/side effects

21 September 2008 Lampson: Lazy and Speculative Execution 10

Split The Work

Lazy
t:=L; !A; !B(t) !A; !B(L) A latency only

t:=L; !A; if c →!B(t) !A; if c →!B(L) less work if ~c

t:=L; !A; if c →!B(t) t:=L1; !A; if c →!B(L2(t)) more general

Speculative
!A; ifc →!B(S) t:=S || !A; if c →!B(t) B latency only

!A; ifc →!B(S) t:=S1|| !A; if c →!B(S2(t)) more general

 For less work, you bet on the conditional, if c
! marks actions that have output/side effects

21 September 2008 Lampson: Lazy and Speculative Execution 11

Winning the Bet

 Lazy: You might need it but you don’t,
 because a later if decides not to use it: c is false
t:=L; !A; if c → !B(t) !A; if c → !B(L) c false

 Speculative: You might not need it but you do,
 because a later if decides to use it: c is true

!A; if c → !B(S) t:=S || !A; if c → !B(t) c true

21 September 2008 Lampson: Lazy and Speculative Execution 12

Correctness: Actions Must Commute

 L; A = A; L or A; S = S; A
 More generally, actions must interleave

▬ Commute is a special case of A; B = A || B

 Ensured by any of:
 L/S is purely functional
 L/S has no side effects and reads nothing A writes
 Transactions

▬ Detect conflict, abort, and retry in the proper order
▬ Often used for speculation, just aborting S

21 September 2008 Lampson: Lazy and Speculative Execution 13

Performance and Scheduling

 Two factors
 Bet on the outcome of the conditional
 More concurrency (pays if you have extra resources)

 Bandwidth (total cost of doing work)
 Less work to do if you win the lazy bet
 More concurrency when lazy, or if you win the

speculative bet
▬ Good if you have idle resources, which is increasingly likely

 Latency
 Faster results from A when lazy: L; !A !A; L
 Faster results from S with concurrency: A; S S || A

21 September 2008 Lampson: Lazy and Speculative Execution 14

Lazy: Redo Logging

 For fault-tolerant persistent state
 Persistent state plus log represents current state
 Only use the log after a failure

 ps = persistent state, l = log, s = state
 s = ps; l
 To apply an update u: l := l; u writing a redo program
 To install an update u: ps := ps; u
 Need s' = s, so ps; u; l = ps; l

▬ u; l = l is sufficient
 The bet: No crash. An easy win
 Rep: state = persistent state + log

21 September 2008 Lampson: Lazy and Speculative Execution 15

Lazy: Write Buffers

 In memory and file systems
 Be lazy about updating the main store

▬ Writeback caching is a variation

 The bet: Data is overwritten before it’s flushed
 Also win from reduced latency of store
 Also win from load balancing of store bandwidth
 Rep: State = main store + write buffer

 Same idea as redo logging, but simpler

21 September 2008 Lampson: Lazy and Speculative Execution 16

Lazy: Copy-on-Write (CoW)

 Keep multiple versions of a slowly changing state
 Be lazy about allocating space for a new version

▬ Do it only when there’s new data in either version
▬ Otherwise, share the old data

 Usually in a database or file system
 The bet: Data won’t be overwritten.

 Usually an easy win.
 Big win in latency when making a new version
 Big win in bandwidth if versions differ little
 Rep: Data shared among versions (need GC)

21 September 2008 Lampson: Lazy and Speculative Execution 17

Lazy: Futures / Out of Order

 Launch a computation, consume the result lazily
 Futures in programming languages—program controls
 Out of order execution in CPUs—hardware infers

▬ IN VLIW program controls
 Dataflow is another form—either way

 The bet: Result isn’t needed right away
 Win in latency of other work
 Win in more concurrency

21 September 2008 Lampson: Lazy and Speculative Execution 18

Lazy: Stream Processing

 In database queries, Unix pipes, etc.,
 Apply functions to unbounded sequences of data

▬ f must be pointwise: f (seq) = g(seq.head) f (seq.tail)
 Rearrange the computation to apply several functions

to each data item in turn
▬ If f and g are pointwise, so is f ◦ g

 Sometimes fails, as in piping to sort

 The bet: don’t need the whole stream
 Always a big win in latency

 In fact, it can handle infinite structures

21 September 2008 Lampson: Lazy and Speculative Execution 19

Lazy: Eventual Consistency

 Weaken the spec for updates to a store
 Give up sequential consistency / serializability
 Instead, can see any subset of the updates

▬ Requires updates to commute
 sync operation to make all updates visible

 Motivation
 Multi-master replication, as in DNS
 Better performance for multiple caches

▬ ―Relaxed memory models‖
 The bet: Don’t need sync

 A big win in latency
 Rep: State = set of updates, not sequence

21 September 2008 Lampson: Lazy and Speculative Execution 20

Lazy: Window Expose Events

 Only compute what you need to display
 Figure out what parts of each window are visible
 Set clipping regions accordingly

 The bet: Regions will never be exposed
 A win in latency: things you can see now appear faster
 Saves work: things not visible are never rendered

21 September 2008 Lampson: Lazy and Speculative Execution 21

Lazy: “Formatting operators”

 In text editors, how to make text ―italic‖
 Attach a function that computes formatting. Examples:

▬ Set ―italic‖
▬ Next larger font size
▬ Indent 12 points

 Only evaluate it when the text needs to be displayed.
 The bet: text will never be displayed

 A win in latency: things you can see now appear faster
 Saves work: things not visible are never rendered

 Used in Microsoft Word

21 September 2008 Lampson: Lazy and Speculative Execution 22

Lazy: Carry-save adders

 Don’t propagate carries until need a clean result
 Represent x as x1 + x2
 For add or subtract, x + y = x1 + x2 + y = r1 + r2

▬ r1i := x1i x2i yi ; r2i+1 := maj(x1i, x2i, yi)

 The bet: Another add before a test or multiply

21 September 2008 Lampson: Lazy and Speculative Execution 23

Lazy:“Infinity” and “Not a Number”

 Results of floating point operations
 Instead of raising a precise exception

 Changes the spec
 No bet, but a big gain in latency

21 September 2008 Lampson: Lazy and Speculative Execution 24

Speculative: Optimistic Concurrency Control

 In databases and transactional memory
 The bet: Concurrent transactions don’t conflict
 The idea:

 Run concurrent transactions without locks
 Atomically with commit, check for conflicts with

committed transactions
▬ In some versions, conflict with any transaction because

writes go to a shared store
 If conflict, abort and retry

 Problem: running out of resources

21 September 2008 Lampson: Lazy and Speculative Execution 25

Speculative: Prefetching

 In memory, file systems, databases
 The bet: Prefetched data is used often enough

 to pay for the cost in bandwidth
 Obviously the cost depends on what other uses there

are for the bandwidth
 Scheduling

 Figure out what to prefetch
▬ Take instructions from the program
▬ Predict from history (like branch prediction)

 Assign priority

21 September 2008 Lampson: Lazy and Speculative Execution 26

Speculative: Branch Prediction

 The bet: Branch will go as predicted
 A big win in latency of later operations
 Little cost, since otherwise you have to wait

 Needs undo if speculation fails
x → !S !S; ~x → undo !S

 Scheduling: Predict from history
 Sometimes get hints from programmer

21 September 2008 Lampson: Lazy and Speculative Execution 27

Speculative: Data Speculation

 Generalize from branch prediction: predict data
 Seems implausible in general—predict 0?
 Works well to predict that cached data is still valid

▬ Even though it might be updated by a concurrent process

 The bet: Data will turn out as predicted
 An easy win for coherent caches

 Works for distributed file systems too
 Variation: speculate that sync will succeed

▬ Block output that depends on success

21 September 2008 Lampson: Lazy and Speculative Execution 28

Speculative: Exponential backoff

 Schedule a resource without central control
 Ethernet
 WiFi (descended from Aloha packet radio, 1969)
 Spin locks

 The idea
 Try to access resource
 Detect collision, wait randomly and retry
 Back off exponentially, adapting to load

 The bet: No collision
 Good performance needs collision < hold time

21 September 2008 Lampson: Lazy and Speculative Execution 29

Speculative: Caching

 Keep some data
 in the hope that you will use it again,
 or you will use other data near it

 The bet: Data is reused
 Typically cost is fairly small

 But people depend on winning
 because cost of miss is 100x – 1000x

 Bet yields a big win in latency and bandwith
 >100x in latency today
 Save expensive memory/disk bandwidth

21 September 2008 Lampson: Lazy and Speculative Execution 30

Conclusion

 A way to think about system design
 Could I do this lazily/speculatively?
 When would it pay?

 Steps toward a sound theory of laziness or
speculation
 I am not presenting such a theory

 Lazy: defer work that may not be needed
 Pays in saved work (and perhaps in latency)
 Pays in more concurrency (if you have extra resources)

 Speculative: Do work that may not be needed
 Pays in more concurrency (if you have extra resources)

View publication stats

https://www.researchgate.net/publication/221241390

