
1

Lazy and Speculative Execution

Butler Lampson
Microsoft Research

International Conference on Functional Programming
22 September 2008

21 September 2008 Lampson: Lazy and Speculative Execution 2

Why This Talk?

 A way to think about system design
 Could I do this lazily/speculatively?
 When would it pay?

 Steps toward a sound theory of laziness or
speculation
 I am not presenting such a theory

21 September 2008 Lampson: Lazy and Speculative Execution 3

Lazy Evaluation

 Well studied in programming languages
 Though not much used
 Lazy vs. eager/strict
 Examples:

▬ Algol 60 call by name
▬ Lazy is the default in Haskell
▬ By hand: wrap the lazy part in a lambda

 May affect semantics
▬ Side effects—usually not allowed
▬ Free variables, e.g. in call by name
▬ Termination even in purely functional languages

21 September 2008 Lampson: Lazy and Speculative Execution 4

Lazy Execution in Systems

 Widely used in systems
 Though not much studied

 The main idea: defer work that may not be needed
▬ Deferred work: a closure, or a program you write

 Pays in lower latency (because of reordering)
 Allows more concurrency (if you have extra

resources)
 Pays in less work (if result is never needed)

 Faster with limited resources
 A few examples:

 Carry-save adder: use two numbers to represent one
 Write buffer: defer writes from processor to memory
 Redo logging: use log only after a crash

21 September 2008 Lampson: Lazy and Speculative Execution 5

Speculative Execution in Systems

 Widely used in processors, and less widely in
other systems

 The main idea: Do work that may not be needed
 Pays in more concurrency (if you have extra resources)

 Costs in extra work (if result is never used)

 Faster with excess resources
 A few examples

 Prefetching in memory and file systems
 Branch prediction
 Optimistic concurrency control in databases

21 September 2008 Lampson: Lazy and Speculative Execution 6

How? Reordering

 A special case of concurrency
 Usual constraint: Don’t change the semantics

 There are some exceptions
 Issues

 Correctness : Do reordered parts commute
 Performance : Scheduling
 Representation of reordered work

21 September 2008 Lampson: Lazy and Speculative Execution 7

Reordering

Lazy
t:=L; !A; !B(t) !A; !B(L) A latency only

t:=L; !A; !B(t) t:=L ||!A; !B(t) with concurrency

t:=L; !A; !B(t) !A; !B(L) A latency only

Speculative
!A; ifc →!B(S) t:=S || !A; if c →!B(t) B latency only

!A; ifc →!B(S) t:=S1|| !A; if c →!B(S2(t)) more general

or less work, you bet on the conditional, if c
! marks actions that have output/side effects

21 September 2008 Lampson: Lazy and Speculative Execution 8

Reordering With Concurrency

Lazy
t:=L; !A; !B(t) !A; !B(L) A latency only

t:=L; !A; !B(t) t:=L || !A; !B(t) with concurrency

Speculative
!A; ifc →!B(S) t:=S || !A; if c →!B(t) B latency only

more work if ~c

For less work, you bet on the conditional, if c
! marks actions that have output/side effects

21 September 2008 Lampson: Lazy and Speculative Execution 9

Reordering and Conditionals

Lazy
t:=L; !A; !B(t) !A; !B(L) A latency only

t:=L; !A; if c →!B(t) !A; if c →!B(L) less work if ~c

Speculative
!A; ifc →!B(S) t:=S || !A; if c →!B(t) B latency only

more work if ~c

 For less work, you bet on the conditional, if c
! marks actions that have output/side effects

21 September 2008 Lampson: Lazy and Speculative Execution 10

Split The Work

Lazy
t:=L; !A; !B(t) !A; !B(L) A latency only

t:=L; !A; if c →!B(t) !A; if c →!B(L) less work if ~c

t:=L; !A; if c →!B(t) t:=L1; !A; if c →!B(L2(t)) more general

Speculative
!A; ifc →!B(S) t:=S || !A; if c →!B(t) B latency only

!A; ifc →!B(S) t:=S1|| !A; if c →!B(S2(t)) more general

 For less work, you bet on the conditional, if c
! marks actions that have output/side effects

21 September 2008 Lampson: Lazy and Speculative Execution 11

Winning the Bet

 Lazy: You might need it but you don’t,
 because a later if decides not to use it: c is false
t:=L; !A; if c → !B(t) !A; if c → !B(L) c false

 Speculative: You might not need it but you do,
 because a later if decides to use it: c is true

!A; if c → !B(S) t:=S || !A; if c → !B(t) c true

21 September 2008 Lampson: Lazy and Speculative Execution 12

Correctness: Actions Must Commute

 L; A = A; L or A; S = S; A
 More generally, actions must interleave

▬ Commute is a special case of A; B = A || B

 Ensured by any of:
 L/S is purely functional
 L/S has no side effects and reads nothing A writes
 Transactions

▬ Detect conflict, abort, and retry in the proper order
▬ Often used for speculation, just aborting S

21 September 2008 Lampson: Lazy and Speculative Execution 13

Performance and Scheduling

 Two factors
 Bet on the outcome of the conditional
 More concurrency (pays if you have extra resources)

 Bandwidth (total cost of doing work)
 Less work to do if you win the lazy bet
 More concurrency when lazy, or if you win the

speculative bet
▬ Good if you have idle resources, which is increasingly likely

 Latency
 Faster results from A when lazy: L; !A  !A; L
 Faster results from S with concurrency: A; S  S || A

21 September 2008 Lampson: Lazy and Speculative Execution 14

Lazy: Redo Logging

 For fault-tolerant persistent state
 Persistent state plus log represents current state
 Only use the log after a failure

 ps = persistent state, l = log, s = state
 s = ps; l
 To apply an update u: l := l; u writing a redo program
 To install an update u: ps := ps; u
 Need s' = s, so ps; u; l = ps; l

▬ u; l = l is sufficient
 The bet: No crash. An easy win
 Rep: state = persistent state + log

21 September 2008 Lampson: Lazy and Speculative Execution 15

Lazy: Write Buffers

 In memory and file systems
 Be lazy about updating the main store

▬ Writeback caching is a variation

 The bet: Data is overwritten before it’s flushed
 Also win from reduced latency of store
 Also win from load balancing of store bandwidth
 Rep: State = main store + write buffer

 Same idea as redo logging, but simpler

21 September 2008 Lampson: Lazy and Speculative Execution 16

Lazy: Copy-on-Write (CoW)

 Keep multiple versions of a slowly changing state
 Be lazy about allocating space for a new version

▬ Do it only when there’s new data in either version
▬ Otherwise, share the old data

 Usually in a database or file system
 The bet: Data won’t be overwritten.

 Usually an easy win.
 Big win in latency when making a new version
 Big win in bandwidth if versions differ little
 Rep: Data shared among versions (need GC)

21 September 2008 Lampson: Lazy and Speculative Execution 17

Lazy: Futures / Out of Order

 Launch a computation, consume the result lazily
 Futures in programming languages—program controls
 Out of order execution in CPUs—hardware infers

▬ IN VLIW program controls
 Dataflow is another form—either way

 The bet: Result isn’t needed right away
 Win in latency of other work
 Win in more concurrency

21 September 2008 Lampson: Lazy and Speculative Execution 18

Lazy: Stream Processing

 In database queries, Unix pipes, etc.,
 Apply functions to unbounded sequences of data

▬ f must be pointwise: f (seq) = g(seq.head)  f (seq.tail)
 Rearrange the computation to apply several functions

to each data item in turn
▬ If f and g are pointwise, so is f ◦ g

 Sometimes fails, as in piping to sort

 The bet: don’t need the whole stream
 Always a big win in latency

 In fact, it can handle infinite structures

21 September 2008 Lampson: Lazy and Speculative Execution 19

Lazy: Eventual Consistency

 Weaken the spec for updates to a store
 Give up sequential consistency / serializability
 Instead, can see any subset of the updates

▬ Requires updates to commute
 sync operation to make all updates visible

 Motivation
 Multi-master replication, as in DNS
 Better performance for multiple caches

▬ ―Relaxed memory models‖
 The bet: Don’t need sync

 A big win in latency
 Rep: State = set of updates, not sequence

21 September 2008 Lampson: Lazy and Speculative Execution 20

Lazy: Window Expose Events

 Only compute what you need to display
 Figure out what parts of each window are visible
 Set clipping regions accordingly

 The bet: Regions will never be exposed
 A win in latency: things you can see now appear faster
 Saves work: things not visible are never rendered

21 September 2008 Lampson: Lazy and Speculative Execution 21

Lazy: “Formatting operators”

 In text editors, how to make text ―italic‖
 Attach a function that computes formatting. Examples:

▬ Set ―italic‖
▬ Next larger font size
▬ Indent 12 points

 Only evaluate it when the text needs to be displayed.
 The bet: text will never be displayed

 A win in latency: things you can see now appear faster
 Saves work: things not visible are never rendered

 Used in Microsoft Word

21 September 2008 Lampson: Lazy and Speculative Execution 22

Lazy: Carry-save adders

 Don’t propagate carries until need a clean result
 Represent x as x1 + x2
 For add or subtract, x + y = x1 + x2 + y = r1 + r2

▬ r1i := x1i  x2i  yi ; r2i+1 := maj(x1i, x2i, yi)

 The bet: Another add before a test or multiply

21 September 2008 Lampson: Lazy and Speculative Execution 23

Lazy:“Infinity” and “Not a Number”

 Results of floating point operations
 Instead of raising a precise exception

 Changes the spec
 No bet, but a big gain in latency

21 September 2008 Lampson: Lazy and Speculative Execution 24

Speculative: Optimistic Concurrency Control

 In databases and transactional memory
 The bet: Concurrent transactions don’t conflict
 The idea:

 Run concurrent transactions without locks
 Atomically with commit, check for conflicts with

committed transactions
▬ In some versions, conflict with any transaction because

writes go to a shared store
 If conflict, abort and retry

 Problem: running out of resources

21 September 2008 Lampson: Lazy and Speculative Execution 25

Speculative: Prefetching

 In memory, file systems, databases
 The bet: Prefetched data is used often enough

 to pay for the cost in bandwidth
 Obviously the cost depends on what other uses there

are for the bandwidth
 Scheduling

 Figure out what to prefetch
▬ Take instructions from the program
▬ Predict from history (like branch prediction)

 Assign priority

21 September 2008 Lampson: Lazy and Speculative Execution 26

Speculative: Branch Prediction

 The bet: Branch will go as predicted
 A big win in latency of later operations
 Little cost, since otherwise you have to wait

 Needs undo if speculation fails
x → !S  !S; ~x → undo !S

 Scheduling: Predict from history
 Sometimes get hints from programmer

21 September 2008 Lampson: Lazy and Speculative Execution 27

Speculative: Data Speculation

 Generalize from branch prediction: predict data
 Seems implausible in general—predict 0?
 Works well to predict that cached data is still valid

▬ Even though it might be updated by a concurrent process

 The bet: Data will turn out as predicted
 An easy win for coherent caches

 Works for distributed file systems too
 Variation: speculate that sync will succeed

▬ Block output that depends on success

21 September 2008 Lampson: Lazy and Speculative Execution 28

Speculative: Exponential backoff

 Schedule a resource without central control
 Ethernet
 WiFi (descended from Aloha packet radio, 1969)
 Spin locks

 The idea
 Try to access resource
 Detect collision, wait randomly and retry
 Back off exponentially, adapting to load

 The bet: No collision
 Good performance needs collision < hold time

21 September 2008 Lampson: Lazy and Speculative Execution 29

Speculative: Caching

 Keep some data
 in the hope that you will use it again,
 or you will use other data near it

 The bet: Data is reused
 Typically cost is fairly small

 But people depend on winning
 because cost of miss is 100x – 1000x

 Bet yields a big win in latency and bandwith
 >100x in latency today
 Save expensive memory/disk bandwidth

21 September 2008 Lampson: Lazy and Speculative Execution 30

Conclusion

 A way to think about system design
 Could I do this lazily/speculatively?
 When would it pay?

 Steps toward a sound theory of laziness or
speculation
 I am not presenting such a theory

 Lazy: defer work that may not be needed
 Pays in saved work (and perhaps in latency)
 Pays in more concurrency (if you have extra resources)

 Speculative: Do work that may not be needed
 Pays in more concurrency (if you have extra resources)

View publication stats

https://www.researchgate.net/publication/221241390

