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Solutions to Problem Set 8

Exercise 1 - Alfvèn waves

a) Consider a transverse wave in a string with tension S and mass per unit length M
(Fig. 1).
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Figure 1: Transverse wave in a string.

For a purely transverse wave the net force along the z direction vanishes, so the net
force is equal to the net force along y, F tot

y .

|S1z| = |S2z| = S

Considering the geometry of the problem, we have the following relations:
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Using Newton’s law in the y direction, we have
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where we used m = M∆z. Therefore,
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and, considering the limit ∆z → 0
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This is the equation of a wave with velocity v given by:

v =

√
S

M

b) We are considering small perturbations on a uniform equilibrium:

u0 = 0; ρ0, p0 uniform; B0 = B0ez

The linearized ideal MHD equations with respect to that equilibrium are:

∂ρ1
∂t

+ ρ0∇ ·u1 = 0 (1)
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1
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∂B1

∂t
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p1 = c2sρ1 (4)

We use the same geometry that has been considered during the course, with a magnetic
field along z, B = B0 êz and the velocity perturbation in the y direction:

B0 = (0, 0, B0)

u = (0, u1y, 0)

Note: Following the analogy of the string, the magnetic field sets the direction of
propagation of the wave (along z). As we have assumed a uniform equilibrium we can
then set ∂/∂x = ∂/∂y = 0 since quantities do not change in the x and y directions.

Now, since ∂/∂y = 0, we have ∇ ·u = 0 (incompressible fluid) so that ∇ ·u1 = 0.
Therefore ρ1 = 0 and p1 = c2sρ1 = 0. Rewriting the cross products:
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êx êy êz
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The system of equations is then:

ρ0
∂u1y

∂t
=

B0

µ0

∂B1y

∂z
(5)

∂B1y

∂t
= B0

∂u1y

∂z
(6)

If we consider the time derivative of Eq. (6),
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we can substitute the term ∂u1y/∂t from the Eq. (5) we find:
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This is the equation of a wave propagating at the Alfvén velocity

cA =
B0√
µ0ρ0

and is formally equivalent to the equation for a transvere wave on a string with tension
S and mass per unit length M . By comparing the propagation speeds

v =

√
S

M
⇔ cA =

B0√
µ0ρ0

one can then relate B0/µ0 to the tension and ρ0/B0 to the mass per unit length.

c) If we consider a plasma in ITER:

cA =
B0√
µ0ρ0

with ρ0 = mp(ADnD + nTAT ) = mpne(AD/2 + AT/2)

cA =
6√

4π · 10−7 · 1.67× 10−27 · 1020 · (1 + 1.5)
≃ 8.27× 106 ms−1

d) In order to determine which particles are resonant with the Alfvén waves, we need to
estimate the speed of the charged particles: Electrons, D ions, T ions and α particles.

In order to do this, we use the formula of the thermal speed vth,i =
√

Ti

mi
, where mi

and Ti indicated the mass and the (kinetic) energy of particle i respectively.

As the plasma is at T = 13 keV, we obtain vth,D ≃ 7.9×105 m/s vth,T ≃ 6.4×105 m/s,
and vth,e ≃ 4.8× 107 m/s.

The speed of the α particles is estimated from the kinetic energy: vα =
√

2Eα

4mp
≃

1.3 × 107 m/s. These results mean that only the α particles are resonant with the
Alfvén waves. Alphas are anyway slowed down by collisions, as we have seen in previous
lectures.
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Exercise 2 - CMA diagram

a) The X-mode cutoffs and resonances in terms of X, and Y are

• Cyclotron resonances Y = 1/n2

• UH resonance: 1 = X + Y → Y = 1−X

• Cutoff: (
ω2−ω2

p

ω2 )2 − Ω2
e

ω2 = 0 → (1−X)2 = Y

b) Consider the case n = 1 (first harmonic heating). Initially, the wave is outside the
plasma so the density is zero → X = 0. The field at the edge is lower than at the
center so Ωe < Ωe0 → Y < 1. As the wave propagates from low field side to high field
side, the magnetic field increases as B ∼ 1/r. At the same time, the density increases
(X increases). At the plasma center the density is highest and B = B0 → Ωe = Ωe0 →
Y = 1. At the high field side the density is again zero (X = 0) and the field is higher
than at the center, so Y > 1. For nth harmionic heating the picture is exactly the
same but the values of Y are centered around 1/n2. The propagation of the wave for
different harmonics is presented in Fig. 2.

For first harmonic X-mode heating a wave launched from the LFS (B < B0 so it starts
below the resonance in the CMA diagram) first encounters the cutoff. It will therefore
be reflected. However for 2nd harmonic heating and above it is possible for the wave to
encounter the resonance first, provided the density is not too high. If it were possible
to launch from the High Field Side (HFS), X1 heating would be possible as well.

c) O-mode cutoffs and resonances in terms of X and Y :

• Cyclotron resonances Y = 1/n2

• Cutoff: X = 1

The O mode has fewer restrictions in terms of cutoff, the only cutoff being the plasma
frequency which depends only on the density and is in any case at higher density than
the X mode cutoff.

d) Based on the magnetic fields the resonances are ITER:170GHz, TCV:41GHz. This
rules out X2 heating on ITER because this above the reach of present gyrotron tech-
nology. Indeed, ITER will use > 20MW of EC heating in the first harmonic O mode
(O1). 170GHz gyrotron sources capable of continuously delivering 2MW are being
studied and developed at SPC-EPFL.

TCV on the other hand can in principle use X2 heating. In practice it uses both X2
(3MW launched from the low field side) and X3 (1.5MW launched from the top). The
advantage of X3 is that higher densities can be reached than with X2.
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Simple CMA diagram for X and O mode, perpendicular injection
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Figure 2: Clemmow-Mullaly-Allis diagram for X and O mode. Wave trajectories are
shown for 1st and 2nd harmonic injection and for different core plasma densities. Note
that for low field side X1 injection the wave first encounters a cutoff. X2 may encounter
a cutoff or resonance, depending on the density. O mode has a higher density limit but
will eventually be cut off at the plasma frequency.
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