
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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This exam is open book. But no electronic devices of any kind are allowed. There are six
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easiest and collect as many points as possible. Good luck!
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Problem 1. (These Bandits – 10 pts)

Consider an adversarial bandit setting with K bandits, where the rewards are arbitrary

numbers xt,k ∈ [0, 1] (t stands for the time index and runs from 1 to n and k is the index

of the bandit, which goes from 1 to K). You are the adversary, in charge of designing the

rewards. You know that the policy that is used is the Exp3 algorithm.

Your task is to fill in the numbers. You are given the constraint that the ”average” value of

all rewards must be 1
2
, where the ”average” means the sum over all n×K entries divided by

n×K.

Your aim is to make the expected reward (not regret) of the player as small as possible.

(i) [5pts] What is the expected reward the player gets, when normalized by the time n?

We are only interested in the first order term, i.e., the constant, and not higher terms

that vanish with n.

(ii) [5pts] Explain how you fill in the numbers to minimize the expected reward and com-

pute this reward.

Solution: We know that, using the Exp3 algorithm our expected regret (normalized by the

time) is sublinear. In other words, we will do almost as good as if we knew the reward matrix

and could choose that bandit that has the highest reward, i.e., that row of the matrix whose

sum is maximal.

Therefore our task is to make sure that the maximum row sum is as small as possible.

By assumption the ”average” value of all rewards is 1
2
. Note that we can compute this

average in various ways. In particular we can first compute the reward for each arm and

then average over the players. We conclude that the average reward, when averaged over

the bandits must be 1
2
. And our aim is to minimize the maximum reward under this average

constraint.

Therefore, if we want to minimize the expected reward that the player will get it is best if

we make all bandits to have the same expected reward. Hence, fill in all rows (rewards of a

bandit) in such a way that its expected value of this row is 1
2
. To first order, the expected

reward that the player will get is then 1
2
.

Grading Notes:
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Problem 2. (Estimating Entropy – 15pts)

You are given n iid samples of a Bernoulli random variable with parameter µ. The parameter

is known to be in the range [κ, 1 − κ], where 0 < κ ≤ 1
2
. Let the samples be denoted by

S = {X1, X2, · · · , Xn}, Xi ∈ {0, 1}, i = 1, · · ·n.

Your task is to estimate the entropy of the underlying distribution accurately. Let h denote

the true entropy of the distribution and ĥ = ĥ(S) be your estimate.

(i) [5pts] Design a scheme to accurately estimate h. Give an explicit epression for ĥ as a

function of the samples S.

(ii) [5pts] Since the samples S are random your estimate ĥ(S) is a random variable. Let

δ, ε > 0. Derive a bound of the form

P{|ĥ(S)− h| ≥ ε} ≤ δ.

(iii) [5pts] In the expression of (ii) assume that you set δ to some fixed constant. How does

the gap ε behave as a function of n?

Hint: Simple does it.

Solution:

(i) [5pts] Let µ̂(S) = min{max{κ, 1
n

∑n
i=1Xi}, 12}. This is essentially just the emperical

mean. Since we know the range of the parameter it makes sense to incorporate this

knowledge into the estimate. To estimate the entropy we use the plug-in estimator

ĥ(S) = h2(µ̂(S)), where h2(x) = −x log2(x)− (1− x) log2(1− x).

(ii) [5pts] Each Xi − µ is subgaussian with parameter 1/4. Therefore

P{|µ̂(S)− µ| ≥ ε} ≤ 2e2nε
2 ↔ P{|µ̂(S)− µ| ≥

√
log(δ/2)

2n
} ≤ δ.

By direct computation, h′2(x) = log2((1− x)/x) and h′2(x) ≤ cκ = log2((1− κ)/κ) for

x ∈ [κ, 1
2
].

Therefore,

P{|ĥ(S)− h| ≥ cκ

√
log(δ/2)

2n
} ≤ δ.

(iii) [5pts] It decays as 1/
√
n. Note: In the above bound we took the constant to be cκ. But

we can do better by observing that with probability 1− δ the estimate is at most the

given gap away from the true entropy. Therefore, rather than taking the derivative at κ

we can take it at max{κ, ĥ−
√

log(δ/2)
2n
}. This does not change the speed of convergence

but it will in general result in a smaller constant.

Grading Notes: It does not have to be this scheme they describe. As long as it is reasonable and correct

we give them full points.
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Problem 3. (Compression: Fibonacci Coding – 15pts)

Consider the following binary encoding of a positive integer n: CF (n) = I1 . . . Ir1, where

n =
∑r

i=1 IiFi+1 and Fi is i-th Fibonacci number, F0 = 0, F1 = 1, F2 = F0 + F1 = 1, · · · ,
Fi = Fi−1+Fi−2, i ≥ 2, and Ii ∈ {0, 1}. E.g., 1011 denotes the integer 1×1+0×2+1×3 = 4.

For every positive integer n such a representation exists. In order to make it unique, given

an integer, find the largest Fibonacci number that it contains. Note it and remove its value

from the integer. Proceed recursively to find the unique representation. E.g., for n = 4,

F4 = 3 is the largest Fibonacci number that is contained in 4 and F2 = 1 is the largest

Fibonanni number that is contained in n− F4 = 1. This gives us the representation 1011.

Recall that besides a recursive description of the Fibonacci numbers there exists an explicit

formula Fi = b φi√
5

+ 1
2
c, where φ = 1+

√
5

2
∼ 1.618 is the golden ratio.

(i) [5pts] What is the length of CF (n)?

(ii) [2pts] Show that the code is prefix-free. Hint : use the property of Fibonacci numbers

(iii) [3pts] Show that logφ(
√

5i) ≤ 3 + 2 log2 i.

(iv) [5pts] Consider a random variable U that takes values on the positive integers s.t.

P (U = i) is decreasing. Show that E[length(CF (U))] ≤ 3 + 2H(U). Hint : first show

that iP (U = i) ≤ 1

Solution:

(i) [5pts] We need to find the largest Fibonacci number that is contained in n. This leads

us to consider the largest solution to the equation

n ≥ b φ
i

√
5

+
1

2
c

Some thought shows that this has the solution imax = blogφ(n
√

5 + 1
2
)c, which gives

the length of CF (n) to be

blogφ(n
√

5 +
1

2
)c+ 1.

(ii) [2pts] There cannot be two consecutive 1’s in I1 . . . Ir (since Fi−1 + Fi = Fi+1). Hence

two consecutive 1’s appear only at the end of CF (n) and the code is prefix-free.

(iii) [3pts] logφ(
√

5i) = log2(
√
5)+log2(i)

log2((1+
√
5)/2)

. From (1 +
√

5)/2 >
√

2 and
√

5 < 2
√

2 we get the

desired expression.
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(iv) [5pts] If li = r+1, i is at least Fr+1 and i ≥ Fr+1 > φli/
√

5. Therefore li < logφ(
√

5i) <

3 + 2 log2 i. Since iP (U = i) ≤ 1 (similarly to homework), we have P (U = i) ≤ 1/i

and therefore log2 P (U = i) ≤ − log2 i and

E[length(CF (U))] =
∑
i

P (U = i)li ≤ 3 + 2
∑
i

P (U = i) log2 i

≤ 3− 2
∑
i

P (U = i) log2 P (U = i) = 3 + 2H(U)
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Problem 4. (Exponential families - 10pts)

For t > 0, Consider a family of distributions supported on [t,+∞] such that E[lnX] = 1
α

+ln t,

α > 0.

(i) [5pts] What is the parametric form of a maximum entropy distribution satisfying the

constraint on the support and the mean?

(ii) [5pts] Find the exact form of the distribution.

Solution:

(i) [5pts] The maximum entropy distribution has the parametric form eθ lnx−A(θ) = xθe−A(θ).

(ii) [5pts] Let us first find the value of A(θ) from the density constraint
∫∞
t
xθe−A(θ)dx = 1.

This gives e−A(θ) = − θ+1
tθ+1 .

Next we find θ from the mean constraint
∫∞
t
xθe−A(θ) lnx dx = 1

α
+ ln t. This gives

tθ+1((θ+1) ln t−1)
tθ+1(θ+1)

= ln t− 1
θ+1

= 1
α

+ ln t and therefore θ = −(α + 1). The resulting form

of the distribution is

p(x) =
αtα

xα+1

.
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Problem 5. (KL Divergence and L1 – 10pts)

(i) [5pts] Show that −D(p||q) ≤ log
∑

i min(pi, qi) + log
∑

i max(pi, qi) Hint: The key is

to write log(q/p) in some clever form involving min and max. And if you do not know

what to do next with sums involving logs, ask Jensen.

(ii) [5pts] Use the fact that min(a, b) = a+b
2
− |a−b|

2
and max(a, b) = a+b

2
+ |a−b|

2
and (a) to

show that |p− q|1 ≤ 2
√

1− exp(−D(p||q))

Solution:

(i) [5pts]

−D(p‖q) =
∑
i

pi log
qi
pi

=
∑
i

pi

(
log

[
min

(
qi
pi
, 1

)]
+ log

[
max

(
qi
pi
, 1

)])
≤ log

∑
i

pi min

(
qi
pi
, 1

)
+ log

∑
i

pi max

(
qi
pi
, 1

)
= log

∑
i

min(pi, qi) + log
∑
i

max(pi, qi)

(ii) [5pts]

log
∑
i

min(pi, qi) + log
∑
i

max(pi, qi)

= log
∑
i

(
pi + qi

2
− |pi − qi|

2

)
+ log

∑
i

(
pi + qi

2
+
|pi − qi|

2

)

= log

[
1−

∑
i

|pi − qi|
2

]
+ log

[
1 +

∑
i

|pi − qi|
2

]

= log

[(
1−

∑
i

|pi − qi|
2

)
·

(
1 +

∑
i

|pi − qi|
2

)]

= log

1−

(
1

2

∑
i

|pi − qi|

)2


The rest goes by rearranging the terms.
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Problem 6. (Signal Representations – 10 pts) Assume that we get m u1, . . . , um in Rd.

The dimension d is very large. Therefore we would like to compress the data. We fix n < d

and we would like to produce n-dimensional representations û1, . . . , ûm that are close to the

original ones. Assume that we collect our data samples into a d × m matrix U and the

desired representations into a n×m matrix Û .

In the course we learned that two possible compression techniques for this scenario is either

to use a PCA or random projections.

Recall that random projections are linear maps f(u) : Rd → Rn, defined as f(u) = 1√
n
Xu,

where X is a real-valued matrix with iid zero-mean unit-variance entries.

(i) [5pts] Assume that your ”goodness” criterion is the spectral norm ||UTU − ÛT Û ||2.
What guarantees to you get for both methods? You can assume that the smallest

eigenvalue of XTX is 0.

(ii) [5pts] Assume your ”goodness” criterion is maxi,j |||ui − uj||2 − ||ûi − ûj||2|. What

guarantees do you get for both methods? No need for complicated computations.

Solution: Let λi be the eigenvalues of matrix UTU . Recall that they are the squared singular

values of the matrix U

(i) [5pts] PCA gives the optimal solution by leaving the n largest eigenvalues of UTU and

setting d − n others to zero. For spectral norm this gives ||UTU − ÛT Û ||2 = λ2n+1.

In case of random projections, we have ||UTU − ÛT Û ||2 = ||UT (I − 1
n
XTX)U ||2 ≤

||UT ||2||I − 1
n
XTX||2||U ||2 = λ21||I − 1

n
XTX||2 ≈ λ21

(ii) [5pts] For random projections we have a bound of type δmaxi,j ||ui − uj||2. In case of

PCA, we have no guarantees on the distance, so the best bound we can come up with

is just maxi,j ||ui − uj||2.

Grading Notes:
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