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Problem 1 (Angle Preservation in Johnson-Lindenstrauss Mapping). [10pts]

Consider a set of K points, X = {xi}Ki=1 ⊂ Rn. Recall that in the course we showed that

the Johnson-Lindenstrauss mapping f : Rn → Rm preserves distances between points up to

a small multiplicative factor.

In this problem, we will study how well the Johnson-Lindenstrauss mapping preserves angles

between points in X . As in class, we will consider a mapping of the form fH(x) = 1√
m
Hx,

where each entry of H is drawn i.i.d from N (0, 1).

Let us denote by θijk the angle between xij = xi− xj and xkj = xk− xj. We will study how

this angle compares to the angle after the Johnson-Lindenstrauss mapping, θ̃ijk, i.e., to the

angle between fH(xij) and fH(xkj).

Ideally, for every triplet i, j, k, we want something of the form

(1∓ αε) cos θijk − βε(|xij|, |xkj|) ≤ cos θ̃ijk ≤ (1± αε) cos θijk + βε(|xij|, |xkj|)

where αε ≈ 0 and βε(|xij|, |xkj|) → 0 as ε → 0 (∓ and ± because cos(θijk) can be positive

or negative). There are several ways of proving such a result, but we will derive this bound

by controlling the difference between the inner products 〈fH(xij), fH(xkj)〉 and 〈xij,xkj〉.

(i) [3pts] Find g(k) such that, if m > g(k), then the probability that H is such that for

every triplet i, j, k we have

(1− ε)||xij ± xkj||22 ≤ ||fH(xij)± fH(xkj)||22 ≤ (1 + ε)||xij ± xkj||22
and for every pair i, j we have

(1− ε)||xij||22 ≤ ||fH(xij)||22 ≤ (1 + ε)||xij||22
is strictly positive. What is the order of g(k)?

[Hint : Check Johnson-Lindenstrauss proof if you don’t know where to start.]

Solution :

From the lecture notes

P((1− ε)||x− x′||22 ≤ ||fH(x)− fH(x′)||22 ≤ (1 + ε)||x− x′||22) ≥ 1− 2e−
mε2

8

but instead of having
(
k
2

)
conditions to be fulfilled, now we have 2

(
k
3

)
+
(
k
2

)
conditions

to be fulfilled. Therefore using the union bound, all the conditions are fulfilled with a

probability larger than

1−
(

2

(
k

3

)
+

(
k

2

))
2e−

mε2

8

Equating the above equation to 0, we conclude that

m >
8

ε2
log

(
2

(
k

3

)
+

(
k

2

))
2
(
k
3

)
+
(
k
2

)
is polynomial in k. Therefore, g(k) ∝ log(k).
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(ii) [3pts] Show that for an H that fulfills the conditions above we have for every triplet

i, j, k

|〈fH(xij), fH(xkj)〉 − 〈xij,xkj〉| ≤ ε(||xij||22 + ||xkj||22).

[Hint : 4〈x,x′〉 = ||x + x′||22 − ||x− x′||22]

Solution : We have,

4〈fH(xij), fH(xkj)〉
= ||fH(xij) + fH(xkj)||22 − ||fH(xij)− fH(xkj)||22
≤ (1 + ε)||xij + xkj||22 − (1− ε)||xij − xkj||22
= 4〈xij,xkj〉+ 2ε(||xij + xkj||22 + ||xij − xkj||22)
= 4〈xij,xkj〉+ 4ε(||xij||22 + ||xkj||22)

We can form a similar inequality for the lower bound.

(iii) [2pts] Show that

cos θ̃ijk ≤ max

{
1

1− ε
cos θijk +

ε

1− ε
Dijk,

1

1 + ε
cos θijk +

ε

1 + ε
Dijk

}
and

min

{
1

1− ε
cos θijk −

ε

1− ε
Dijk,

1

1 + ε
cos θijk −

ε

1 + ε
Dijk

}
≤ cos θ̃ijk.

where

Dijk =
||xij||22 + ||xkj||22
||xij||2||xkj||2

.

[Hint : Is there a way to relate cosine and inner product?]

Solution : Continuing from the previous point, we have

〈xij,xkj〉 − ε(||xij||22 + ||xkj||22) ≤ 〈fH(xij), fH(xkj)〉 ≤ 〈xij,xkj〉+ ε(||xij||22 + ||xkj||22).

Observe that 〈xij,xkj〉 = |xij||xkj| cos θijk. Dividing the inequality by |fH(xij)||fH(xkj)|
gives us

〈xij,xkj〉 − ε(||xij||22 + ||xkj||22)
||fH(xij)||2||fH(xkj)||2

≤ cos θ̃ijk ≤
〈xij,xkj〉+ ε(||xij||22 + ||xkj||22)
||fH(xij)||2||fH(xkj)||2

.

The expression on the problem is obtained by choosing the appropriate direction of

bound for ||fH(xij)||2||fH(xkj)||2. For example, if 〈xij,xkj〉 ≥ 0, then,

cos θ̃ijk ≤
1

1− ε
〈xij,xkj〉
||xij||2||xkj||2

+
ε

1− ε
||xij||22 + ||xkj||22
||xij||2||xkj||2

=
1

1− ε
cos(θijk) +

ε

1− ε
||xij||22 + ||xkj||22
||xij||2||xkj||2
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(iv) [2pts] Find x,x′ such that,

P ((1− ε)〈x,x′〉 ≤ 〈fH(x), fH(x′)〉 ≤ (1 + ε)〈x,x′〉) = 0

Using this, explain why we cannot get a bound of the form

(1∓ αε) cos θijk ≤ cos θ̃ijk ≤ (1± αε) cos θijk

Solution : Take x and x′,both non-zero vectors, to be orthogonal to each other, hence

the event that we consider is such that

〈fH(x), fH(x′)〉 = 0.

This event is a null-event given how we sample the matrix H.

Therefore, setting xi, xj, xk such that, xij = x, xkj = x′ we get, θijk = ±π/2 =⇒
cos θijk = 0. Therefore, if we had a bound,

(1∓ αε) cos θijk ≤ cos θ̃ijk ≤ (1± αε) cos θijk,

then cos θ̃ijk must be 0. For that, it must be that,

〈fH(x), fH(x′)〉 = 0.

However, this happens with probability 0 over the choice of matrix H.
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Problem 2 (KL and its Fenchel-Legendre dual). [10pts] In this problem, we study the

Kullback-Leibler divergence D(P‖Q) as a function of P, for fixed Q. Throughout this prob-

lem, the logarithm shall be taken as the natural logarithm.

(i) [5pts] Let us first assume that P and Q are probability density functions (that is,

continuous random variables). Fix Q to be the normal distribution of mean zero and

variance σ2. Let P be arbitrary but with the same second moment as Q. Show that in

this case, D(P‖Q) = h(Q)− h(P ), that is, the difference of the differential entropy of

the normal distribution and the differential entropy of P.

Solution: Let X = {x : p(x) > 0}. Then,

D(P‖Q) =

∫
x∈X

p(x) log
p(x)

q(x)
dx (1)

= −h(P )−
∫
x∈X

p(x) log q(x)dx (2)

= −h(P )−
∫
x∈X

p(x) log

(
1√

2πσ2
e−

x2

2σ2

)
dx (3)

= −h(P )− log

(
1√

2πσ2

)
+

∫
x∈X

p(x)
x2

2σ2
dx (4)

= −h(P ) +
1

2
log
(
2πσ2

)
+
EP [X2]

2σ2
(5)

= −h(P ) +
1

2
log
(
2πσ2

)
+

1

2
(6)

= −h(P ) +
1

2
log
(
2πσ2

)
+

1

2
log e (7)

= −h(P ) +
1

2
log
(
2πeσ2

)
, (8)

where we recognize the second summand to be exactly the differential entropy of the

Gaussian distribution with variance σ2.

Alternatively, since we assume that second moments are equal, we could have observed

that

D(P‖Q) = −h(P )− log

(
1√

2πσ2

)
+

∫
x∈X

p(x)
x2

2σ2
dx (9)

= −h(P )− log

(
1√

2πσ2

)
+

∫
x∈X

q(x)
x2

2σ2
dx (10)

= −h(P )−
∫
x∈X

q(x) log

(
1√

2πσ2
e−

x2

2σ2

)
dx (11)

= −h(P )−
∫
x∈X

q(x) log q(x)dx, (12)

where the second summand is precisely the entropy of q(x).
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(ii) [5pts] In this part, for simplicity, we restrict to P and Q being probability mass func-

tions (that is, discrete random variables). For a function f(P ), the Fenchel-Legendre

dual (also called the convex dual) is defined as f ∗(R) = supP 〈R,P 〉 − f(P ). More

concretely, if P is a probability mass function over a discrete and finite alphabet X ,
the Fenchel-Legendre dual can be written as

f ∗(R) = max
P

{(∑
x∈X

R(x)P (x)

)
− f(P )

}
, (∗)

where R(x) is an arbitrary function on the alphabet X .

(a) [3pts] For the case where f(P ) = D(P‖Q), show that the optimizing distribution

in Equation (??) is given by

P (x) =
Q(x)eR(x)∑
x̃Q(x̃)eR(x̃)

.

Hint: Write the Lagrangian for the optimization problem in Equation (??), in-

cluding the constraint that P (x) has to sum to one. Then take derivatives as

usual, recalling that we are using the natural logarithm.

(b) [2pts] Show that the Fenchel-Legendre dual of f(P ) = D(P‖Q) (for fixed Q) is

given by

f ∗(R) = log

(∑
x∈X

Q(x)eR(x)

)
,

which includes the logarithm of the moment-generating function of Q as a special

case (select R(x) = λx).

Solution: The Lagrangian is

L(λ, P ) =

(∑
x∈X

R(x)P (x)

)
−
∑
x∈X

P (x) log
P (x)

Q(x)
− λ

(∑
x∈X

P (x)− 1

)
(13)

Taking the derivative with respect to P (x) gives

d

dP (x)
L(λ, P ) = R(x)− log

P (x)

Q(x)
− 1− λ (14)

Setting this to zero, we find

P (x) = Q(x)eR(x)−(1+λ), (15)
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where we observe that P (x) is non-negative (which is good). Next, we have to select

λ to make the P (x) sum to one, that is

e−(1+λ) =
1∑

xQ(x)eR(x)
, (16)

meaning that the optimizing P (x) is given by

P (x) =
Q(x)eR(x)∑
x̃Q(x̃)eR(x̃)

. (17)

Plugging this particular choice of P (x) back into our main expression, we find

f ∗(R) = max
P

{(∑
x∈X

R(x)P (x)

)
− f(P )

}
(18)

=
∑
x∈X

R(x)
Q(x)eR(x)∑
x̃Q(x̃)eR(x̃)

−
∑
x∈X

Q(x)eR(x)∑
x̃Q(x̃)eR(x̃)

log

(
eR(x)∑

x̃Q(x̃)eR(x̃)

)
(19)

=
∑
x∈X

R(x)
Q(x)eR(x)∑
x̃Q(x̃)eR(x̃)

−
∑
x∈X

Q(x)eR(x)∑
x̃Q(x̃)eR(x̃)

R(x)

+
∑
x∈X

Q(x)eR(x)∑
x̃Q(x̃)eR(x̃)

log

(∑
x̃

Q(x̃)eR(x̃)

)
(20)

= log

(∑
x̃

Q(x̃)eR(x̃)

)
. (21)
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Problem 3 (Tighter Generalization Bound). [10pts] Let D = X1, ..., Xn iid from an un-

known distribution PX , let H be a hypothesis space, and ` : H×X → R be a σ2−subgaussian

loss function for every h. In the lecture we have seen that the generalization error can be

upper bounded using the mutual information.

|EPDH [LPX (H)− LD(H)] | ≤
√

2σ2I(D;H)

n

(i) [4 pts] Modify the proof of the Mutual Information Bound (11.2.2) to show that if for

all h ∈ H, `(h,X) is σ2−subgaussian in X, then

|EPDH [LPX (H)− LD(H)] | ≤
√

2σ2
∑n

i=1 I(Xi;H)

n
.

Hint: Recall from the lecture notes that

|EPDH [LPX (H)− LD(H)]| ≤ 1

n

n∑
i=1

∣∣∣EPXiH [`(H,Xi)]− EPXiPH [`(H,Xi)]
∣∣∣ .

Solution:

||EPDH [LPX (H)− LD(H)] || ≤ 1

n

n∑
i=1

∣∣∣EPXiH [`(H,Xi)]− EPXiPH [`(H,Xi)]
∣∣∣

≤ 1

n

n∑
i=1

EPH

[∣∣∣EPXi|H [`(H,Xi)]− EPXi [`(H,Xi)]
∣∣∣]

(11.14)

≤ 1

n

n∑
i=1

EPH

[√
2σ2D(PXi|H ||PXi)

]
(11.12)

≤ 1

n

n∑
i=1

√
2σ2EPH

[
D(PXi|H ||PXi)

]
(11.15)

=
1

n

n∑
i=1

√
2σ2I(Xi;H) (11.15)

≤
√

2σ2
∑n

i=1 I(Xi;H)

n

(ii) [3 pts] Show that, this new bound is never worse than the previous bound by showing

that,

I(D;H) ≥
n∑
i=1

I(Xi;H).
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Solution:

I(D;H) = I(X1, ..., Xn;H) =
n∑
i=1

I(Xi;H|X i−1) (chain rule for MI)

=
n∑
i=1

I(Xi;HX
i−1) (independence of Xi’s)

≥
n∑
i=1

I(Xi;H) (chain rule and non-negativity of MI)

Therefore the new upper bound is never larger than the previous upper bound.

(iii) [3 pts] Let us consider an example. Assume that D = X1, .., Xn, n > 1, are i.i.d.

from N (θ, 1), and that we do not know θ. We want to learn θ assuming the loss

`(h, x) = min(1, (h − x)2) (which is bounded) and H = R. Our learning algorithm

outputs H = 1
n

∑n
i=1Xi. Use the new bound to show that

|EPDH [LPX (H)− LD(H)] | ≤

√
1

4(n− 1)
.

How does the old bound perform in this example?

Hint: Adding independent gaussian random variables, you get a gaussian random

variable.

Solution: Note that the learning algorithm is a deterministic one, that is given a

training set D, the learning algorithm outputs a deterministic number. Note also that

by property of Gaussian, H ∼ N (θ, 1/n). Therefore,

I(D;H) = h(H)− h(H|D) =
1

2
log(2πe

1

n
)− 1

2
log(2πe0) =∞ (22)

which gives a vacuous bound. Let us compute I(X1;H) = h(H) − h(H|X1). Fix x1,

Then,

H =
1

n
x1 +

1

n

n∑
i=2

Xi (23)

which is Gaussian around some mean (which we do not care about) and with variance

(n − 1)/n2, and note that the variance does not depend on x1. Therefore the mutual

information can be computed as,

I(X1;H) = h(H)− h(H|X1) =
1

2
log(2πe

1

n
)− 1

2
log(2πe

n− 1

n2
) =

1

2
log(

n

n− 1
) (24)
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This is true for all I(Xi;H). Also, this loss function is bounded between 0−1 therefore

it is 1/4−subgaussian. We get the bound,

|EPDH [LPX (H)− LD(H)] | ≤
√

2σ2
∑n

i=1 I(Xi;H)

n
=

√
2σ2n1

2
log( n

n−1)

n
(25)

=

√
1

4
log(

n

n− 1
) (26)

=

√
1

4
log(1 +

1

n− 1
) (27)

≤
√

1

4

1

n− 1
(28)
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Problem 4 (Bandits). [10pts] In the course we mentioned contextual bandits. E.g., imagine

that you suspect that the rewards that you get from the various arms depend on the day of

the week (more generally, a particular feature of the input, aka the “context”). In this case

it makes sense to run a separate bandit algorithm for each of the possible contexts. As we

discussed, the downside of this approach is that we now have less data for each of the bandit

algorithms and hence it will take us longer to learn.

Let c be the context, where c ∈ C. We run a separate bandit algorithm for each of the |C|
possible contexts and the total number of steps we take is n. We further assume that the

number of arms is K and the K does not depend on the context. We use the same bandit

algorithm for each of the contexts and we assume that this bandit algorithm has an expected

regret of O(
√
Kn log(n)) (when run over n time steps for a fixed context) in the stochastic

setting.

Consider the following setup. For each context there is a different stochastic bandit with

K arms. At each time a context is sampled independently at random, the player sees the

context, chooses and arm, and receives a reward according to the distribution P c
i (reward

distribution for context c and arm i).

Define the expected regret for this setup as the difference between the expected reward that

we could have gotten if for each context we would have chosen the arm with the largest mean

minus the expected reward we get using our scheme.

(i) [5pts] Show that the expected regret at time n is O(
√
Kn|C| ln(n)).

Discussion: Compared to the case of a single context note that you “only” pay a factor

of
√
|C|. If the number of contexts is small, this might be acceptable. Note further,

that this bound is valid, regardless how often each context appears. Hint: Start by

assuming that each context c ∈ C appears nc times.

Solution: In the sequel let {nc}c∈C denote the number of times we see context c. The

regret is defined as,

R , E[
∑
c∈C

max
i∈[k]

ncµ
(c)
i −

∑
t:ct=c

Xt]

Then, switching the expectation and summation over C,

R =
∑
c∈C

Rc

where we define Rc as the regret for the times we see context c. Then, the expected

regret for the contextual bandit algorithm is equal to
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E[R] = E[E[R|{nc}c∈C]]

≤ sup
{nc}c∈C :

∑
c nc=n

∑
c∈C

E[Rc|{nc}c∈C]

= sup
{nc}c∈C :

∑
c nc=n

∑
c∈C

O(
√
Knc log(nc))

≤ sup
{nc}c∈C :

∑
c nc=n

∑
c∈C

O(
√
Knc log(n))

≤ O(
√
Kn|C| log(n)),

where in the last step we have used the fact that under the condition that n =
∑

c nc
the bound is maximized by the choice nc = n/|C|. This can be seen by writing the

Lagrangian
∑

c

√
nc + λ(

∑
c nc − n) and taking the derivative with respect to the nc.

This gives ∂L
∂nc

= 1
2

1√
nc

+λ. Setting those derivatives to 0 we see that all nc should have

the same size, i.e., nc = n/|C|.

(ii) [5pts] Assume now that C = [0, 1), i.e., C is very large, and in fact uncountable. In

this case we cannot use the strategy above. What would you do in such a case? Under

what circumstances will such a scheme likely work? If we assume a fixed number of

arms and a very large time horizon, how would you expect the regret to scale?

Solution: Assume that the means of all the K arms are Lipschitz functions of the

context c. Hence, by slightly changing the context c, the means only change slightly. In

this case it makes sense to quantize the domain [0, 1), i.e., write [0, 1) = ∪mi=0[δi, δ(i+1)),

where δ = 1/m for some natural number m.

Since the function is Lipschitz, we have for each 1 ≤ i ≤ m,

E[R|c ∈ [δ(i− 1), δi]] ≤ E[R|c = δi− δ/2] +O(n/m).

Plugging this upper bound to our derivation in the previous point gives us,

E[R] ≤ O(
√
Knm log(n)) +O(n/m).

This bound is optimized when m ∈ O
(

3

√
n

k logn

)
. The regret due to this choice of m

scales as

E[R] ≤ O( 3
√
Kn2 log(n)),

which is still sub-linear.
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Problem 5 (Testing against Poisson Distributions). [10pts] Recall that in the course we

talked about how to test against a uniform distribution. In a very similar manner one can

test against any fixed distribution. In this problem we explore a slightly more interesting

question, i.e., to what degree can we test against a whole class of distributions?

Let X = {0, 1, 2, · · · } = N≥0. Let P be the set of Poisson distributions and let Q be the set

of distributions on X that have an `1 distance of at least ε > 0 from every element in P .

Let X̄(Xn) = 1
n

∑n
i=1Xi, i.e., X̄(Xn) is the empirical mean given the samples Xn. Consider

the following test statistics T (Xn)→ R, defined by

T (Xn) =

∣∣∣∣∣ 1n
n∑
i=1

(Xi − X̄)2

X̄
− 1

∣∣∣∣∣ .
The sum in this expression is called the dispersion.

(i) [4pts] Assume that the samples come from an element of P and assume further that

the number of samples is large. What value do you expect T (Xn) to take on and

why? HINT: What is the expected value of X̄(Xn) and what is the expected value of
1
n

∑n
i=1(Xi − X̄)2.

Solution: Recall that for a Poisson distribution the mean equals the variance. The

dispersion is equal to the ratio of the empirical variance to the empirical mean. We

therefore expect a value close to 0.

(ii) [4pts] Assume that the number of samples is very large and that T (Xn) takes on a

large value, lets say close to 1. What can you conclude?

Solution: As discussed in part (i), if the samples came from an actual Poisson distri-

bution then the test statistic should give us a value close to 0 with high probability if

the number of samples is large. We therefore can conclude that with high probability

the samples do not come from an element of P , i.e., not from a Poisson distribution.

(iii) [2pts] Assume that the number of samples is very large and that T (Xn) takes on a value

very close to the value that you determined in point (i). Can you conclude anything

with high probability, and if so, what, or if not, why not?

Solution: Unfortunately we cannot conclude that the samples come from a distribu-

tion in P . The test only checks if the samples comes from a distribution whose mean

is close to its variance. Poisson distributions have this property but they are not the

only distributiosn that have this property. E.g., pick a distribution on N≥0 that has

weight 1/2 on 2 and 1/2 on 6. It has mean 4 and this is also its variance.
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