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General formalism for waves in the two fluid model

e Two-Fluid Model for By #0, T =0

Waves in the two-fluid model

e Cut-offs (all 6).

e Resonances for 6 = 5

e Dispersion relation for 8 = g

e Use of dispersion relations.
The case of inhomogeneous plasmas
e Ray-tracing.
e Accessibility (“CMA" diagram).
Brief discussion of wave-particle interactions

e \Wave-particle resonances.
e Collisionless (Landau) damping.

e Cyclotron resonances.

Appendix: Parallel propagation of waves in plasmas



Summary

We have seen that the dynamical response of a plasma to a perturbation (for a given equi-
librium) evolves as a wave described in Fourier space by components (plane wave) behaving
like

el(k-xfwt).

As the system is linear (after linearisation, by considering only small perturbations to a given
equilibrium), the final solution will be the sum (or the integral) of all the plane waves.

The key point in wave physics is to know which combinations of frequency and wavelengths
(w, k) can exist and propagate in the plasma.

w = w(k), or k = k(w) (both from the implicit relation D(w, k) = 0) gives this information:
“dispersion relation”.

The dispersion relation is the key to all wave physics problems and applications, from knowing
which modes can become unstable in a burning plasma, to determining which sources and
geometries to heat a plasma.

We have started with the most macroscopic model to describe the plasma, the MHD model.
We have seen that in this model three kinds of waves can exist: the shear Alfvén w? = k2c3
(p1 = p1 = 0), the compressional Alfvén w? = k2c3 and the sound wave (also compressional)
w? = k2c2.

For shear Alfvén waves, we have seen an analogy with a chord subject to tension and inertia.
In the ideal MHD, the plasma is attached to field lines.

However, MHD is only a very crude description of the plasma: for example it does not account
for distinction between species, hence it cannot describe resonance phenomena essential for
plasma heating.

1 General formalism for waves in the two fluid model

e Infinite medium
e Small perturbations — linearisation + Fourier

e |dea: Maxwell's equations in vacuum, but with plasma as the source:

oB 1 OE

VxE:—a VxB:uoj—F?E (1.1)
v.E="X V-B=0 (1.2)
€0
di 108%E
Vx(VxE)= —uoa—Jt T how to express j in terms of E 7 (1.3)

In uniform and stationary conditions, the Fourier components are linked by a "simple" relation
(constitutive relation of matter):

jwk =0, Euk g,k conductivity tensor (1.4)
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the wave equation in Fourier space becomes

Note 8.1.1: Plasma physics is in g, i.e. in g. The crucial point is constructing the relation
between g and E.

Two-Fluid Model for B, #0, T =0

We will now consider plasma waves and oscillations with By # 0! in the cold plasma model,
T = 0. We expect that Bg, by introducing a "privileged" direction, will bring a wide variety
of plasma modes of oscillation.

Let’s take a two-fluid model with T = 0, and therefore p = 0, with an equilibrium
Uy = 0 Bo = Boez (1.9)

where @ = e,/ denotes the plasma species and Bg, nqo = ng and pg are uniform. The
linearisation of the equation of motion

ma{%l:‘—l—(ua-V)ua}:qa{E+ua x B} (1.10)

Most plasmas of interest, also because of flux freezing, have By # 0 somewhere
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Introducing the mobility tensor B, this can be written as

Ua1:/;1, 'E1.

Note that due to the uy x Bo term, u_ (hence g and g) will not be diagonal.

separation of the components in eq.(1. 1=2) yields
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The current density is given by
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We get for the conductibility tensor
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Finally we obtain the dielectric tensor
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Note that, for a cold plasma, £ does not depend on k, but only on w. For By — 0 we have
€x — 0 and €1 — €3, thus € becomes a diagonal matrix. As we have expected, there is no

privileged direction anymore.



2 Waves in plasmas
2.1 Waves in the two fluid model

e Homogenous equation:
kk

to have non-trivial solution, i.e. E #0
e Choose a geometry: By = BoZ; k = (0, ksinf, k cos6)

Figure 1: Notation: Geometry of magnetic field and wave.

Choosing k in the yz-plane and defining the angle 8 with respect to the z-axis as shown in
figure 1, we find

Kk —N2 0 0 €7 —1e&5 O
N? [k2 — ]4 +g = 0  —N2cos?6 N?sinfcosf |+ |iex € O
0 N2sinfcosf —N2sin’6 0 0 3
—N? 4 ¢ —l€o 0
= 1€ —N2cos?6+¢€;  N?sinfcosh
0 N2sinfcos®  —N2sin’6 + e
We impose the condition
—N? + ¢ — 1€ 0
det I€2 —N?cos?0+¢€;  N?sinfcosd | =0 (2.2)
0 N2sinfcos®  —N2sin’0 + e

to have a non—trivial solution for E;. This leads to a dispersion relation of the type
AN* 4+ BN?>+C =0 (2.3)

where A and B depend on the angle 6 (between k and Bg) and w, but not on |k|, and C
only depends on w.

Important points are
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e “cut-off” where the wave is reflected

N=0,C=0 — %—)oo (k=0 w#0) (2.4)

e “resonance’” where the wave is absorbed

N— oo, A=0 = —0 (2.5)

x| g

Note 8.2.1: To have a transfer of energy from the wave to the plasma (to heat it or to
drive current), one has to inject a wave that avoids cut-off and reaches a resonance in the
plasma.

Cut-offs

N2 — 0<—=C — 0.

Introducing
ER=€1+ € (2.6)
€ = €1 —€2 (2'7)
we can write
C = EREL €3 (28)

Note that C is independent of 8. In the cold plasma model, the cut—offs do not depend on
the propagation angle. In general, there are three cut—offs

er =0 = W= Wwgr (2.9)
e, =0 = W =w (2.10)
€e3=0 = W ™ Wpe (2.11)

In the limit Qe > Q;,

WRr,L =

{\/Q§+4w§ei§2€} , (2.12)

N -

thus w; < wpe < Wrg.

In the limit B — 0 we find that wr | = wpe.

These are points we need to avoid if we want to launch a wave in the plasma, for example
to heat it.

Resonances

N2 — co<=A — 0.
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As the condition

A= A(w,0) =€1sin’0 +e3cos26 =0 (if 1 #£0) (2.13)
depends on the angle 8, for given values of €1, €3 (i.e. of plasma parameters and frequency),
there will be one angle for which the wave will encounter a resonance. Let's consider the
perpendicular direction, 6 = /2.
For 6 = 7, to have A — 0, we need.

€1Sin29—|—€3C0529 =¢;=0

This gives the so called "hybrid" resonances

w? 2 Q0 = wiy “lower hybrid" resonance (2.14)

w? = wﬁ + Q2 = wiy “upper hybrid” resonance (2.15)

Note 8.2.2: The lower hybrid resonance is very important for current drive in fusion.

Graphical summary of dispersion relation

Perpendicular propagation

6 = 5. We distinguish waves with E || By (so called Ordinary Mode, OM) and E L By (so
called Extraordinary Mode, XM).
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Figure 2: Dispersion relation for § = 7
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Note 8.2.3: The case of 6 = 7 is particularly useful for heating fusion plasmas (access for

antennas is typically from a side 'port’).

Figure 3: Access antennas by side port

2.2 Comments on the use of dispersion relations

Boundary value problem

In this type of problem the aim is to determine the expression of an electric field E(x, t) of
which we only know the value at one position in the plasma. We fix a boundary condition on
the electric field, such as E(x = 0, t) (e.g. with an antenna). The dispersion relation can
be used in order to express the field E(x, t) as an inverse Fourier transform from w to t:

E(x,t) = /R dwEq(w)e! (K@rx—wt) (2.16)

with w € R and k € C3. The electric field evaluated in x =0 is
E(0,t) = / dwEqy(w)e "t
R

Therefore the Fourier transform of E(0, t) with respect to t is:

1 .
Eo(w) = 27r/Rth(O, t)ewt

The electric field E(x, t) can then be retrieved using Eq. 2.16. This solves the problem
entirely, except that in several cases we don't have only a single root of the dispersion
equation, but several. In these cases the boundary condition

E(x=0,t)

alone is insufficient, and we also need as many derivatives as there are missing pieces of
information. The electric field is now a linear combination of the solutions obtained from
each root of the dispersion relation, noted k;, with amplitude Ej;:

N
E(x, t) = ;/Rdwon(w)e"(kj(w)-th)
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and thus
omE ! m|
—— = / dw Z Eoj(w) [ikj(w)]™ p et with m=0,...,N—1.
Gx x=0 R =1

where ‘g:—,ﬂxzo, m = 0,...,N — 1, are the known boundary conditions. We are left with a
system of N equations to find N unknowns, the amplitudes Eg;, which provide a solution for
the electric field.

Initial value problem

For this problem, the aim is also to determine the expression of an electric field E(x, t)
starting from an initial value. The procedure is the same as the boundary value problem,
except that we have E(x,t = 0), and we need to use the relation w = w(k). The Fourier
transforms will then go between k and x.

Case of non-homogenous plasmas

Fusion plasmas are generally very non-homogenous (ne = ne(r), Bo = Bo(r), Te = Te(r), ...).
How can our model, based on Fourier formalism, and on J = ¢ - E (i.e. on stationarity an uni-
formity), still hold? Are all of these dispersion relations still applicable in a non-homogenous
plasma?

The key point is the ratio between wavelength and the scale of the spatial variation (and of
course, between the wave period and the characteristic time of changes in the plasma). If

AL L (forex. L=1Lp= <), and Wyave > Tchiac , then our formalism is still valid.

We “just” need to account for the fact that the dispersion relations are a function of position:
Dy(w, k) thus k = k(w, x). At each x the relation k(w) is slightly different because the
plasma parameters change. We can replace

_ X
e/(k~x—wt) by exp (I{/ k(w' X/) dx’ — wt}> (2.17)
0

This is method is called “ray-tracing".

Plasma accessibility

Naturally, we need to explore the “accessibility>” to heat the plasma. As stated above, we
need to reach a resonance by avoiding cut-offs. This can be visualised in a diagram (“CMA”
diagram, see Fig. 4), which takes into account the two main parameters varying radially, n
and B (for perpendicular propagation). For this purpose we define two quantities, X and Y/,
proportional to n and Bg respectively:

2 2
w _Qe

X:w—g (cn)  V=—3 (x B?)

2This point was treated in today's problem set.
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Using these quantities, the conditions for cut-offs (Egs. 2.11 and 2.12) or resonance (Eq.
2.15) can be expressed as:

O-Mode, X =1
Cut-off ode (2.18)
X-Mode. Y = (1 — X)?

W = WyH, Y=1-X

) (2.19)
w=12, Y==5(1,025.)*

Resonance {

* Note 8.2.1 : these cyclotron resonances for perpendicular propagation are not in the fluid
model; they exist only in the kinetic model.

X=1 o
T Y cut-off W=3le
B 1 resonance
0
W= WyH
resonance
“T—XM cut-off
1 "X
n —

Figure 4. "CMA’ diagram illustrating the cut-offs and resonances

3 Kinetic Model

We have seen that the "two-fluid’ model leads to a variety of waves (in particular if By # 0),
and to an idea of what happens to the waves in a real plasma.

However, the fluid theory cannot describe the detail of the process of interactions between
the waves and the plasma particles, which are important both for stability and for absorption
(or damping) of the waves by the plasma.

For this, a 'kinetic' model is necessary, which describes the evolution of a distribution of
particles, not all going at the same velocity.

Definition: The distribution function f(x, v, t) is defined such that:

the number of particles in dxdv, phase space

f t)dxd = '
(x, v, t)dxdv volume centered at (x, v), at time t.
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The evolution of f is important when the velocities of the particles are quite different, i.e.
for relatively large temperatures. Otherwise, when all particles have similar velocities, f is
peaked and the fluid description is valid.

f(v) f(v)

fluid ok need kinetic treatement

For high temperatures the plasma can be considered collisionless. As a reminder, this is
because collision frequency scales like T-3/2 so hotter plasmas are less collisional.

We will not study the details of the kinetic (also called "hot plasma’) model, but we will look
(qualitatively) at one fundamental aspect of plasma waves.

3.1 Collisionless damping and wave-particle interaction

The key point in the energy exchange is the wave-particle resonance, which occurs when
the particle moves roughly at the same velocity as the wave: v,, = % = Vparticle-

f(v)

The resonant particles are
responsible for the exchange of
energy with the wave.

E:V

The sign of particle acceleration depends on a phase term.

The question is if, overall, particles gain energy from the wave (damping, heating of plasma),
or if the energy goes from the particles to the wave (instability). Asw = w,+iy and E o e“t,
this is represented by the sign of «y, which we refer to as the “damping (or growth) rate”.
Indeed, the real part of w goes into an oscillatory term so it is the sign of the imaginary
part that is relevant: if v > 0 then E decreases exponentially, and if v < 0 it increases
exponentially with time, resulting in an instability.

From the full theory, one finds that

dFo

du '
u="%

(3.1)

where Fg is the unperturbed distribution function.

This is the collisonless or Landau damping (no need of collisions to exchange energy!)
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Why is the damping rate proportional to the slope of Fy?

Consider particles with velocities just larger than the wave phase velocity v 2 w/k. They can
gain or lose energy depending on the relative phase of the wave, but if they gain energy, their
velocity increases and they go out of the resonance: they can not exchange energy. If they
lose energy, they slow down and stay longer in the resonance. So, overall, these particles
lose energy to the wave.

The opposite holds for particles with velocities just below the phase velocity v < w/k. Those
that gain energy from the wave remain in the resonance longer, and the net effect is that
particles gain energy from the wave.

F(u) dF,

f@

gain energy / 3\ I
(on average) \%\ (Sieaevrgii}é)
Z
.
0
Z

(a) (b)

Figure 5: (a) Particles with v < w/k will gain energy from the wave and particles with
u 2 w/k will lose energy to the wave. As there are more particles which gain energy, the
overall effect is that the wave is damped.

(b) Analogy with a surfer riding a wave.

The total energy balance is therefore given by the ratio between how many particles gain
energy from the wave (with v < w/k) and how many give energy to the wave (v 2 w/k).
This balance can be deduced from the slope of Fo(u) around the resonance u ~ w/k (Fig.
5).

A (very) qualitative analogy can be drawn with surfers trying to catch an ocean wave: to
'ride’ the wave (i.e. to be pushed by it) the surfer must prepare himself or herself more or
less at the speed of the wave (u ~ w/k), but just a little slower.

Question: if the wave is damped, its energy goes into the kinetic energy of the particles, but
how can it happen without any collisions?

To understand this, we introduce the concept of phase mixing: microscopic (velocity depen-
dent) perturbations of f(v) around the resonance can remain (as there is no dissipation),
but it is the collective motion of the particles that sustains a macroscopic perturbation. As
a result, there can be a reduction in the wave amplitude due to the de-correlation of the
individual velocity classes instead of dissipation:
e if the initial perturbation of f, fj,i(v) = 0(v) , there is no de-correlation, thus no
damping
e if fi,i is wide there is de-correlation (phase mixing) and thus damping. The wider the
distribution, the stronger the damping.
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3.2 Cyclotron resonances

The collisionless absorption processes can be understood in terms of phase mixing and res-
onant wave-particle interaction. In fusion we are always in the presence of a magnetic field
By, so we have a special case of wave-particle resonance, at the cyclotron frequency (or its
harmonics).

Consider a wave electric field perpendicular to By (E L Bp). In the presence of the magnetic
field, a strong interaction between waves and plasma particles is only possible under certain
conditions, at specific ratios between w, the frequency of the wave electric field, and 2, the
frequency of gyromotion of the particles.

Fundamental frequency w = 2 : a strong interaction is only possible if A\; > p; (or
kip. < 1). Here, X\ is the wavelength of the wave electric field, and p; (Larmor
radius) is the radius of gyration of charges in the plasma due to By.

AN
A, y

I ]
I 1 3y
>

In fact, if A\ < pr, we cannot guarantee that the particle motion remains in phase
with the wave, which is a necessary condition for efficient exchange of energy.

oL

X
-
»

First harmonic w = 202 : a strong interaction is possible if k;p; ~ 1. If A ~ p;, the
particle can encounter a field of the opposite sign in the second half of its gyromotion,
so it can always be accelerated (or decelerated).

Higher harmonics w = n{2 : to have resonance, the particle should have

w w
Vph ~ v =Qpp = — =Qp = kipp = = =n.
ki Q

Note 8.3.1:

e A wave propagating exactly in a plane perpendicular to By cannot undergo cyclotron
damping, and is not that useful for heating because only one velocity is resonant.
However, if k # 0, a finite portion of the distribution function can be resonant, i.e.
absorb energy efficiently, as

w — k” VH = n{2

where w — kv is the Doppler shifted frequency.
e The same effect is produced by relativistic effects, as Q2 — £ and for different energies,

the resonant condition varies. Of course, for the relativistic effect to be significant,
particles (electrons, in this case) need to be relatively energetic (high temperature).
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Appendix: Parallel propagation of waves in plasmas

For 6 =0 (k || Bo), Eq. 2.13 becomes

€
tan26=——> =0 (3.2)
€1
Thus there are resonances for:
e3=0 = w? = wge see following note (3.3)
€1 — 00 = w? =02, “cyclotron resonances” (3.4)

Note: The case e3 =0, w? = wge is pathological: it is a cut-off and a resonance at the same
time, which is unphysical. The problem is that we assumed T = 0; in reality for T # 0, it is
only a cut-off.

Example of a full dispersion relation for parallel propagation

The idea is to split the electric field into two components with different polarisation (as in
optics). Left and right polarizations are defined as:

Er =Ex—IE, — rotates with the electrons (conter-clockwise) (3.5)
E,L =E«+IE, — rotates with the ions. (3.6)

We therefore expect Er and E; to resonate with electrons and ions, respectively. The
dispersion relation is given by:

> (WTFwr)(wtw)
RET (we)(w F Q)

(3.7)

What is the limit of N,%’L for w, k — 07

k2c?  wrw; w3 e’n me mj min 5 pm _ C?

~ = = = = C = —
w? Qe Q| eomeeBoeBy  €0B3 Bo/umo ¢35

Thus, Z—i = C—lz which corresponds to Alfvén waves. This is the MHD limit.
A

Idea to diagnose plasma: send a linear polarised wave, which can be seen as the sum of two
circularly polarised waves, Er and E;.

The phase velocities of Eg and E; are different (“bi-refringence”). Thus, rotation rates will
be different. The vector E will rotate (depending on plasma parameters though wg, w;, Qe
and €2;). The measure of the rotation of polarisation (also called Faraday rotation) allows
one to measure By, the electron density ne, etc. A schematic drawing is provided in Fig. 6.

Parallel propagation

For waves propagating parallel to By (6 = 0), there are only the transverse wave branches,
which exist only if By # 0. The graphical solution is displayed in Fig. 7.
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Figure 6: Faraday rotation: through the measure of 3, describing the rotation of E in the
plasma, it is possible to retrieve several parameters such as By and ne

region of whistlers (also called “helicon” waves)

7 ek=c
.

A
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R electron cyclotron waves

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

L
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L ion cyclotron waves

shear Alfvén waves

k

Figure 7: Graphical solution of the dispersion relation for 8 = 0 (parallel propagation).
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