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General formalism for waves in the two fluid model

• Two-Fluid Model for B0 ̸= 0, T = 0

Waves in the two-fluid model

• Cut-offs (all θ).

• Resonances for θ = π
2

• Dispersion relation for θ = π
2

• Use of dispersion relations.

The case of inhomogeneous plasmas

• Ray-tracing.

• Accessibility (“CMA” diagram).

Brief discussion of wave-particle interactions

• Wave-particle resonances.

• Collisionless (Landau) damping.

• Cyclotron resonances.

Appendix: Parallel propagation of waves in plasmas
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Summary

We have seen that the dynamical response of a plasma to a perturbation (for a given equi-
librium) evolves as a wave described in Fourier space by components (plane wave) behaving
like

e ı(k ·x−ωt).

As the system is linear (after linearisation, by considering only small perturbations to a given
equilibrium), the final solution will be the sum (or the integral) of all the plane waves.

The key point in wave physics is to know which combinations of frequency and wavelengths
(ω, k) can exist and propagate in the plasma.
ω = ω(k), or k = k(ω) (both from the implicit relation D(ω, k) = 0) gives this information:
“dispersion relation”.

The dispersion relation is the key to all wave physics problems and applications, from knowing
which modes can become unstable in a burning plasma, to determining which sources and
geometries to heat a plasma.

We have started with the most macroscopic model to describe the plasma, the MHD model.
We have seen that in this model three kinds of waves can exist: the shear Alfvén ω2 = k2z c

2
A

(p1 = ρ1 = 0), the compressional Alfvén ω2 = k2c2A and the sound wave (also compressional)
ω2 = k2z c

2
S.

For shear Alfvén waves, we have seen an analogy with a chord subject to tension and inertia.
In the ideal MHD, the plasma is attached to field lines.

However, MHD is only a very crude description of the plasma: for example it does not account
for distinction between species, hence it cannot describe resonance phenomena essential for
plasma heating.

1 General formalism for waves in the two fluid model

• Infinite medium

• Small perturbations → linearisation + Fourier

• Idea: Maxwell’s equations in vacuum, but with plasma as the source:

∇× E = −
∂B

∂t
∇× B = µ0j+

1

c2
∂E

∂t
(1.1)

∇ · E =
ρ

ε0
∇ · B = 0 (1.2)

∇× (∇× E) = −µ0
∂j

∂t
−
1

c2
∂2E

∂t2
; how to express j in terms of E ? (1.3)

In uniform and stationary conditions, the Fourier components are linked by a "simple" relation
(constitutive relation of matter):

jω,k = σ
¯̄ω,k
· Eω,k σ

¯̄ω,k
: conductivity tensor (1.4)
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⇒ Fourier:

−k× (k× Eω,k) = iωµ0σ
¯̄
· Eω,k +

ω2

c2
Eω,k (1.5)

Multiplying by c
2

ω2
and noting that c2µ0 = 1

ε0
one finds that:

−
c2

ω2
k× (k× E) =

(
i

ωε0
σ
¯̄
+ 1

)
· E (1.6)

where 1 =

1 0 00 1 0

0 0 1

 = δi j and
(
i
ωε0
σ
¯̄
+ 1

)
= ϵ

¯̄
dielectric tensor

As

k× (k× E) = k2
(
kk

k2
− 1

)
· E and N2 =

k2c2

ω2
, (1.7)

the wave equation in Fourier space becomes

{
N2

(
kk

k2
− 1

)
+ ϵ

¯̄

}
· E = 0 (1.8)

Note 8.1.1: Plasma physics is in ε
¯̄
, i.e. in σ

¯̄
. The crucial point is constructing the relation

between σ
¯̄

and E.

Two-Fluid Model for B0 ̸= 0, T = 0

We will now consider plasma waves and oscillations with B0 ̸= 01 in the cold plasma model,
T = 0. We expect that B0, by introducing a "privileged" direction, will bring a wide variety
of plasma modes of oscillation.

Let’s take a two-fluid model with T = 0, and therefore p = 0, with an equilibrium

uα0 = 0 B0 = B0ez (1.9)

where α = e, i denotes the plasma species and B0, nα0 ≡ n0 and ρ0 are uniform. The
linearisation of the equation of motion

mα

{
∂uα
∂t
+ (uα · ∇∇∇)uα

}
= qα {E + uα ×B} (1.10)

1Most plasmas of interest, also because of flux freezing, have B0 ̸= 0 somewhere
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yields

mα
∂uα1
∂t
= qαE1 + qαuα1 ×B0 (1.11)

and after a Fourier transformation

−ıωmαuα1 = qαE1 + qαuα1 ×B0. (1.12)

Introducing the mobility tensor µ
¯̄α

this can be written as

uα1 = µ
¯̄α
· E1. (1.13)

Note that due to the uα × B0 term, µ
¯̄α

(hence σ
¯̄

and ε
¯̄
) will not be diagonal. Careful

separation of the components in eq.(1.12) yields

µ
¯̄α
=
qα
mα


−ıω
Ω2α−ω2

Ωα
Ω2α−ω2

0

− Ωα
Ω2α−ω2

−ıω
Ω2α−ω2

0

0 0 ı
ω

 . (1.14)

The current density is given by

J =
∑
α

qαnα0uα1 =
∑
α

qαnα0µ
¯̄α
· E1 ≡ σ

¯̄
· E1. (1.15)

We get for the conductibility tensor

σ
¯̄
=

∑
α

qαnα0µ
¯̄α
=

∑
α

q2α
mα
nα0


−ıω
Ω2α−ω2

Ωα
Ω2α−ω2

0

− Ωα
Ω2α−ω2

−ıω
Ω2α−ω2

0

0 0 ı
ω

 . (1.16)

Finally we obtain the dielectric tensor

ε
¯̄
= 1

¯̄
+
ıσ
¯̄
ε0ω

=

 ϵ1 −ıϵ2 0

ıϵ2 ϵ1 0

0 0 ϵ3

 (1.17)

where

ϵ1 = 1 +
∑
α

ω2pα
Ω2α − ω2

(1.18)

ϵ2 = −
∑
α

Ωα
ω

ω2pα
Ω2α − ω2

(1.19)

ϵ3 = 1−
∑
α

ω2pα
ω2

(1.20)

Note that, for a cold plasma, ε
¯̄

does not depend on k , but only on ω. For B0 → 0 we have
ϵ2 → 0 and ϵ1 → ϵ3, thus ε

¯̄
becomes a diagonal matrix. As we have expected, there is no

privileged direction anymore.
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2 Waves in plasmas

2.1 Waves in the two fluid model
• Homogenous equation:

det

{
N2

(
kk

k2
− 1

¯̄

)
+ ϵ

¯̄

}
= 0 (2.1)

to have non-trivial solution, i.e. E ̸= 0
• Choose a geometry: B0 = B0ẑ ; k = (0, k sin θ, k cos θ)

z

y

x

kθ
B
0

Figure 1: Notation: Geometry of magnetic field and wave.

Choosing k in the yz-plane and defining the angle θ with respect to the z-axis as shown in
figure 1, we find

N2
[
kk

k2
− 1

¯̄

]
+ ε

¯̄
=

−N2 0 0

0 −N2 cos2 θ N2 sin θ cos θ

0 N2 sin θ cos θ −N2 sin2 θ

+
 ϵ1 −ıϵ2 0

ıϵ2 ϵ1 0

0 0 ϵ3


=

−N2 + ϵ1 −ıϵ2 0

ıϵ2 −N2 cos2 θ + ϵ1 N2 sin θ cos θ

0 N2 sin θ cos θ −N2 sin2 θ + ϵ3

 .
We impose the condition

det

−N2 + ϵ1 −ıϵ2 0

ıϵ2 −N2 cos2 θ + ϵ1 N2 sin θ cos θ

0 N2 sin θ cos θ −N2 sin2 θ + ϵ3

 = 0 (2.2)

to have a non–trivial solution for E1. This leads to a dispersion relation of the type

AN4 + BN2 + C = 0 (2.3)

where A and B depend on the angle θ (between k and B0) and ω, but not on |k |, and C
only depends on ω.

Important points are
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• “cut-off” where the wave is reflected

N = 0, C = 0 =⇒
ω

k
→∞ (k = 0, ω ̸= 0) (2.4)

• “resonance” where the wave is absorbed

N →∞, A = 0 =⇒
ω

k
→ 0 (2.5)

Note 8.2.1: To have a transfer of energy from the wave to the plasma (to heat it or to
drive current), one has to inject a wave that avoids cut-off and reaches a resonance in the
plasma.

Cut-offs

N2 → 0⇐⇒C → 0.

Introducing

ϵR ≡ ϵ1 + ϵ2 (2.6)

ϵL ≡ ϵ1 − ϵ2 (2.7)

we can write
C = ϵRϵLϵ3 (2.8)

Note that C is independent of θ. In the cold plasma model, the cut–offs do not depend on
the propagation angle. In general, there are three cut–offs

ϵR = 0 =⇒ ω = ωR (2.9)

ϵL = 0 =⇒ ω = ωL (2.10)

ϵ3 = 0 =⇒ ω ≃ ωpe (2.11)

In the limit Ωe ≫ Ωi ,
ωR,L ∼=

1

2

{√
Ω2e + 4ω

2
pe ±Ωe

}
, (2.12)

thus ωL ≤ ωpe ≤ ωR.

In the limit B → 0 we find that ωR,L = ωpe .

These are points we need to avoid if we want to launch a wave in the plasma, for example
to heat it.

Resonances

N2 →∞⇐⇒A→ 0.
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As the condition

A = A(ω, θ) = ϵ1 sin
2 θ + ϵ3 cos

2 θ = 0 (if ϵ1 ̸= 0) (2.13)

depends on the angle θ, for given values of ϵ1, ϵ3 (i.e. of plasma parameters and frequency),
there will be one angle for which the wave will encounter a resonance. Let’s consider the
perpendicular direction, θ = π/2.

For θ = π
2 , to have A→ 0, we need.

ϵ1 sin
2 θ + ϵ3 cos

2 θ = ϵ1 = 0

This gives the so called "hybrid" resonances

ω2 ∼= ΩeΩi = ω2LH “lower hybrid” resonance (2.14)

ω2 ∼= ω2p +Ω2e = ω2UH “upper hybrid” resonance (2.15)

Note 8.2.2: The lower hybrid resonance is very important for current drive in fusion.

Graphical summary of dispersion relation

Perpendicular propagation

θ = π
2 . We distinguish waves with E ∥ B0 (so called Ordinary Mode, OM) and E ⊥ B0 (so

called Extraordinary Mode, XM).

k

ω /k = c A

ω

/k = cω

LHω

Lω

ω
R

lower hybrid

no propagation for XM & OM

no propagation for XM

upper hybrid

OM
XM

XM

compressional Alfvén waves

ωp

ωUH

XM

Figure 2: Dispersion relation for θ = π
2

.
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Note 8.2.3: The case of θ = π
2 is particularly useful for heating fusion plasmas (access for

antennas is typically from a side ’port’).

v

wave 

B0 

Figure 3: Access antennas by side port

2.2 Comments on the use of dispersion relations

Boundary value problem

In this type of problem the aim is to determine the expression of an electric field E(x , t) of
which we only know the value at one position in the plasma. We fix a boundary condition on
the electric field, such as E(x = 0, t) (e.g. with an antenna). The dispersion relation can
be used in order to express the field E(x , t) as an inverse Fourier transform from ω to t:

E(x , t) =

∫
R

dωE0(ω)e
i
(
k(ω)·x−ωt

)
(2.16)

with ω ∈ R and k ∈ C3. The electric field evaluated in x = 0 is

E(0, t) =

∫
R

dωE0(ω)e−iωt .

Therefore the Fourier transform of E(0, t) with respect to t is:

E0(ω) =
1

2π

∫
R

dtE(0, t)e iωt

The electric field E(x , t) can then be retrieved using Eq. 2.16. This solves the problem
entirely, except that in several cases we don’t have only a single root of the dispersion
equation, but several. In these cases the boundary condition

E(x = 0, t)

alone is insufficient, and we also need as many derivatives as there are missing pieces of
information. The electric field is now a linear combination of the solutions obtained from
each root of the dispersion relation, noted kj , with amplitude E0j :

E(x , t) =

N∑
j=1

∫
R

dωE0j(ω)e
i
(
kj (ω)·x−ωt

)
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and thus

∂mE

∂xm

∣∣∣∣
x=0

=

∫
R

dω


N∑
j=1

E0j(ω)
[
ikj(ω)

]m e−iωt with m = 0, ..., N − 1.

where ∂mE
∂xm

∣∣
x=0

, m = 0, ..., N − 1, are the known boundary conditions. We are left with a
system of N equations to find N unknowns, the amplitudes E0j , which provide a solution for
the electric field.

Initial value problem

For this problem, the aim is also to determine the expression of an electric field E(x , t)
starting from an initial value. The procedure is the same as the boundary value problem,
except that we have E(x , t = 0), and we need to use the relation ω = ω(k). The Fourier
transforms will then go between k and x .

Case of non-homogenous plasmas

Fusion plasmas are generally very non-homogenous (ne = ne(r),B0 = B0(r), Te = Te(r), ...).
How can our model, based on Fourier formalism, and on J = σ

¯̄
·E (i.e. on stationarity an uni-

formity), still hold? Are all of these dispersion relations still applicable in a non-homogenous
plasma?

The key point is the ratio between wavelength and the scale of the spatial variation (and of
course, between the wave period and the characteristic time of changes in the plasma). If
λ≪ L (for ex. L = Ln = n

∇∇∇n ), and ωwave ≫ 1
τcharac.

, then our formalism is still valid.

We “just” need to account for the fact that the dispersion relations are a function of position:
Dx(ω, k) thus k = k(ω, x). At each x the relation k(ω) is slightly different because the
plasma parameters change. We can replace

e i(k ·x−ωt) by exp

(
i
{∫ x
0

k(ω, x ′) · dx ′ − ωt
})

(2.17)

This is method is called “ray-tracing”.

Plasma accessibility

Naturally, we need to explore the “accessibility2” to heat the plasma. As stated above, we
need to reach a resonance by avoiding cut-offs. This can be visualised in a diagram (“CMA”
diagram, see Fig. 4), which takes into account the two main parameters varying radially, n
and B (for perpendicular propagation). For this purpose we define two quantities, X and Y ,
proportional to n and B20 respectively:

X =
ω2p
ω2
(∝ n) Y =

Ω2e
ω2
(∝ B20)

2This point was treated in today’s problem set.
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Using these quantities, the conditions for cut-offs (Eqs. 2.11 and 2.12) or resonance (Eq.
2.15) can be expressed as:

Cut-off

{
O-Mode, X = 1

X-Mode. Y = (1−X)2
(2.18)

Resonance

{
ω = ωUH, Y = 1−X
ω = lΩe , Y = 1

l2
(1, 0.25, ...)*

(2.19)

* Note 8.2.1 : these cyclotron resonances for perpendicular propagation are not in the fluid
model; they exist only in the kinetic model.

Y

X1

1

ω = ωUH

resonance

ω = Ωe

resonance

XM cut-off

X = 1

cut-off

B0

n

Figure 4: ’CMA’ diagram illustrating the cut-offs and resonances
.

3 Kinetic Model

We have seen that the ’two-fluid’ model leads to a variety of waves (in particular if B0 ̸= 0),
and to an idea of what happens to the waves in a real plasma.

However, the fluid theory cannot describe the detail of the process of interactions between
the waves and the plasma particles, which are important both for stability and for absorption
(or damping) of the waves by the plasma.

For this, a ’kinetic’ model is necessary, which describes the evolution of a distribution of
particles, not all going at the same velocity.

Definition: The distribution function f (x , v , t) is defined such that:

f (x , v , t)dxdv =
the number of particles in dxdv , phase space
volume centered at (x , v), at time t.
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The evolution of f is important when the velocities of the particles are quite different, i.e.
for relatively large temperatures. Otherwise, when all particles have similar velocities, f is
peaked and the fluid description is valid.

f (v) f (v)

fluid ok need kinetic treatement

For high temperatures the plasma can be considered collisionless. As a reminder, this is
because collision frequency scales like T−3/2, so hotter plasmas are less collisional.

We will not study the details of the kinetic (also called ’hot plasma’) model, but we will look
(qualitatively) at one fundamental aspect of plasma waves.

3.1 Collisionless damping and wave-particle interaction

The key point in the energy exchange is the wave-particle resonance, which occurs when
the particle moves roughly at the same velocity as the wave: vph = ω

k
∼= vparticle .

f (v)

vω

k
= v

The resonant particles are
responsible for the exchange of
energy with the wave.

The sign of particle acceleration depends on a phase term.

The question is if, overall, particles gain energy from the wave (damping, heating of plasma),
or if the energy goes from the particles to the wave (instability). As ω = ωr+iγ and E ∝ e ıωt ,
this is represented by the sign of γ, which we refer to as the “damping (or growth) rate”.
Indeed, the real part of ω goes into an oscillatory term so it is the sign of the imaginary
part that is relevant: if γ > 0 then E decreases exponentially, and if γ < 0 it increases
exponentially with time, resulting in an instability.

From the full theory, one finds that

γ ∝
dF0
du

∣∣∣∣
u=ω

k

, (3.1)

where F0 is the unperturbed distribution function.

This is the collisonless or Landau damping (no need of collisions to exchange energy!)
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Why is the damping rate proportional to the slope of F0?

Consider particles with velocities just larger than the wave phase velocity u ≳ ω/k . They can
gain or lose energy depending on the relative phase of the wave, but if they gain energy, their
velocity increases and they go out of the resonance: they can not exchange energy. If they
lose energy, they slow down and stay longer in the resonance. So, overall, these particles
lose energy to the wave.

The opposite holds for particles with velocities just below the phase velocity u ≲ ω/k . Those
that gain energy from the wave remain in the resonance longer, and the net effect is that
particles gain energy from the wave.

ω/k u

F0(u)

du
dF0

u=ω/k

lose energy gain energy
(on average) (on average)

(a) (b)

Figure 5: (a) Particles with u ≲ ω/k will gain energy from the wave and particles with
u ≳ ω/k will lose energy to the wave. As there are more particles which gain energy, the
overall effect is that the wave is damped.
(b) Analogy with a surfer riding a wave.

The total energy balance is therefore given by the ratio between how many particles gain
energy from the wave (with u ≲ ω/k) and how many give energy to the wave (u ≳ ω/k).
This balance can be deduced from the slope of F0(u) around the resonance u ≃ ω/k (Fig.
5).

A (very) qualitative analogy can be drawn with surfers trying to catch an ocean wave: to
’ride’ the wave (i.e. to be pushed by it) the surfer must prepare himself or herself more or
less at the speed of the wave (u ≃ ω/k), but just a little slower.

Question: if the wave is damped, its energy goes into the kinetic energy of the particles, but
how can it happen without any collisions?

To understand this, we introduce the concept of phase mixing: microscopic (velocity depen-
dent) perturbations of f (v) around the resonance can remain (as there is no dissipation),
but it is the collective motion of the particles that sustains a macroscopic perturbation. As
a result, there can be a reduction in the wave amplitude due to the de-correlation of the
individual velocity classes instead of dissipation:

• if the initial perturbation of f , fini(v) = δ(v) , there is no de-correlation, thus no
damping

• if fini is wide there is de-correlation (phase mixing) and thus damping. The wider the
distribution, the stronger the damping.
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3.2 Cyclotron resonances

The collisionless absorption processes can be understood in terms of phase mixing and res-
onant wave-particle interaction. In fusion we are always in the presence of a magnetic field
B0, so we have a special case of wave-particle resonance, at the cyclotron frequency (or its
harmonics).

Consider a wave electric field perpendicular to B0 (E ⊥ B0). In the presence of the magnetic
field, a strong interaction between waves and plasma particles is only possible under certain
conditions, at specific ratios between ω, the frequency of the wave electric field, and Ω, the
frequency of gyromotion of the particles.

Fundamental frequency ω = Ω : a strong interaction is only possible if λ⊥ ≫ ρL (or
k⊥ρL ≪ 1). Here, λ⊥ is the wavelength of the wave electric field, and ρL (Larmor
radius) is the radius of gyration of charges in the plasma due to B0.

ρLE

xλ

In fact, if λ⊥ ≲ ρL, we cannot guarantee that the particle motion remains in phase
with the wave, which is a necessary condition for efficient exchange of energy.

ρL

E

x

First harmonic ω = 2Ω : a strong interaction is possible if k⊥ρL ∼ 1. If λ⊥ ∼ ρL, the
particle can encounter a field of the opposite sign in the second half of its gyromotion,
so it can always be accelerated (or decelerated).

Higher harmonics ω = nΩ : to have resonance, the particle should have

vph ∼ v⊥ = ΩρL ⇒
ω

k⊥
∼= ΩρL ⇒ k⊥ρL ≃

ω

Ω
= n.

Note 8.3.1:

• A wave propagating exactly in a plane perpendicular to B0 cannot undergo cyclotron
damping, and is not that useful for heating because only one velocity is resonant.
However, if k∥ ̸= 0, a finite portion of the distribution function can be resonant, i.e.
absorb energy efficiently, as

ω − k∥v∥ = nΩ

where ω − k∥v∥ is the Doppler shifted frequency.

• The same effect is produced by relativistic effects, as Ω→ Ω
γ and for different energies,

the resonant condition varies. Of course, for the relativistic effect to be significant,
particles (electrons, in this case) need to be relatively energetic (high temperature).
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Appendix: Parallel propagation of waves in plasmas

For θ = 0 (k ∥ B0), Eq. 2.13 becomes

tan2 θ = −
ϵ3
ϵ1
= 0 (3.2)

Thus there are resonances for:

ϵ3 = 0 =⇒ ω2 = ω2pe see following note (3.3)

ϵ1 →∞ =⇒ ω2 = Ω2e,i “cyclotron resonances” (3.4)

Note: The case ϵ3 = 0, ω2 = ω2pe is pathological: it is a cut-off and a resonance at the same
time, which is unphysical. The problem is that we assumed T = 0; in reality for T ̸= 0, it is
only a cut-off.

Example of a full dispersion relation for parallel propagation

The idea is to split the electric field into two components with different polarisation (as in
optics). Left and right polarizations are defined as:

ER = Ex − iEy → rotates with the electrons (conter-clockwise) (3.5)

EL = Ex + iEy → rotates with the ions. (3.6)

We therefore expect ER and EL to resonate with electrons and ions, respectively. The
dispersion relation is given by:

N2R,L =
(ω ∓ ωR)(ω ± ωL)
(ω±Ωi)(ω ∓ |Ωe |)

(3.7)

What is the limit of N2R,L for ω, k → 0?

k2c2

ω2
∼
ωRωL
|Ωe |Ωi

=
ω2p
|Ωe |Ωi

=
e2n

ε0me

me
eB0

mi
eB0

=
min

ε0B
2
0

= c2
ρm
B0/µ0

=
c2

c2A

Thus, k
2

ω2
= 1
c2A

, which corresponds to Alfvén waves. This is the MHD limit.

Idea to diagnose plasma: send a linear polarised wave, which can be seen as the sum of two
circularly polarised waves, ER and EL.

The phase velocities of ER and EL are different (“bi-refringence”). Thus, rotation rates will
be different. The vector E will rotate (depending on plasma parameters though ωR, ωL, Ωe
and Ωi). The measure of the rotation of polarisation (also called Faraday rotation) allows
one to measure B0, the electron density ne , etc. A schematic drawing is provided in Fig. 6.

Parallel propagation

For waves propagating parallel to B0 (θ = 0), there are only the transverse wave branches,
which exist only if B0 ̸= 0. The graphical solution is displayed in Fig. 7.
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Figure 6: Faraday rotation: through the measure of β, describing the rotation of E in the
plasma, it is possible to retrieve several parameters such as B0 and ne

.

k

ω/k = cA

ω

/k = cω

no propagation for L-waves

no propagation for R-waves

R
L

R

L ion cyclotron waves

electron cyclotron waves

iΩ

Lω

Ω e

ω
R

shear Alfvén waves

region of whistlers (also called “helicon” waves)

Figure 7: Graphical solution of the dispersion relation for θ = 0 (parallel propagation).
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