
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Foundations of Data Science Assignment date: Wednesday, November 17th, 2021, 10:15

Fall 2021 Due date: Wednesday, November 17th, 2021, 12:00

Midterm Exam – CM 1 2

This exam is closed book, closed notes. You are allowed to bring one A4 sheet (both sides of

it) of hand-written and not photocopied notes (”cheat sheet”). No electronic devices of any

kind are allowed. There are four problems. Choose the ones you find easiest and collect as

many points as possible. We do not necessarily expect you to finish all of them. Good luck!
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Problem 1 (Even Moments of Subgaussian RV). [10pts]

(i) [5pts] Let Z be a non-negative random variable. Show that

E[Z] =

∫ ∞
0

Prob(Z > z)dz. (1)

(ii) [5pts] Let X be a σ2-subgaussian random variable. Show that for even integers k = 2m,

E[Xk] ≤ C(k)σk, (2)

and find the expression for C(k). (HINT: Use the formulation of the mean above.

HINT:
∫∞
0
x2m−1e−x

2/2dx = 2m−1(m− 1)!)
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Problem 2 (Generating fair coin flips from rolling the dice). [10pts] Suppose X1, X2, . . .

are the outcomes of rolling a possibly loaded die multiple times. The outcomes are assumed

to be iid. Let P(Xi = m) = pm, for m = 1, 2, . . . , 6, with pm unknown (but non-negative and

summing to one, clearly). By processing this sequence we would like to obtain a sequence

Z1, Z2, . . . of fair coin flips.

Consider the following method: We process the X sequence in successive pairs, (X1X2),

(X3X4), (X5X6), mapping (3, 4) to 0, (4, 3) to 1, and all the other outcomes to the empty

string λ. After processing X1, X2, we will obtain either nothing, or a bit Z1.

(a) [3pts] Show that, if a bit is obtained, it is fair, i.e., P(Z1 = 0|Z1 6= λ) = P(Z1 = 1|Z1 6=
λ) = 1/2.

In general we can process the X sequence in successive n-tuples via a function f :

{1, 2, 3, 4, 5, 6}n → {0, 1}∗ where {0, 1}∗ denotes the set of all finite length binary

sequences (including the empty string λ). [The case in (a) is the function where

f(3, 4) = 0, f(4, 3) = 1, and f(j,m) = λ for all other choices of j and m.] The

function f is chosen such that (Z1, . . . , ZK) = f(X1, . . . , Xn) are i.i.d., and fair (here

K may depend on (X1, . . . , Xn)).

(b) [3pts] Letting H(X) denote the entropy of the (unknown) distribution (p1, p2, . . . , p6),

prove the following chain of (in)equalities.

nH(X) = H(X1, . . . , Xn)

≥ H(Z1, . . . , ZK , K)

= H(K) +H(Z1 . . . , ZK |K)

= H(K) + E[K]

≥ E[K].

Consequently, on the average no more than nH(X) fair bits can be obtained from

(X1, . . . , Xn).

(c) [4pts] Describe how you would find a good f (with high E[K]) for n = 4 which would

work for any distribution (p1, p2, ..., p6).
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Problem 3 (Haar Wavelet). [10pts] Consider the following function f(t).

1
4

1
2

3
4

1

1

0

−1

t

f(t)

Let ψ(t) be the Haar wavelet. (1 for t ∈ [0, 1/2] and −1 for t ∈ [1/2, 1]).

As in the class we define ψm,n(t) = 2−m/2ψ(2−mt− n), for m,n ∈ Z.

(i) [5pts] Note that f(t) =
∑

m,n am,nψm,n(t). Find the scales m ∈ Z such that ∀n, am,n =

0.

(ii) [5pts] Let fm∗(t) be the projection of f(t) to the space spanned by {ψm,n : m,n ∈
Z, m ≥ m∗} w.r.t. the standard L2 norm. Find

max
t∈R
|fm∗(t)− f(t)|

as a function of m∗ ∈ Z.

[Hint : Try m∗ equals to 0 and sketch f0(t).]
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Problem 4 (UCB With Geometric Intervals). [10pts] Consider the following slight variant

of the UCB algorithm. We have K arms. As in the lecture notes, assume that each of these

K arms corresponds to a random variable which is 1-subgaussian. For the first K steps we

sample each of these arms once. After these K first steps we have an interval of length 1,

then an interval of length 2, then one of length 4, and so on. At the beginning of each such

interval we choose the arm in the same manner as the UCB algorithm. More precisely, if t

marks the beginning of a new interval then

At = argmaxkµ̂k(t− 1) +

√
2 ln f(t)

Tk(t− 1)
,

where f(g) = 1 + t ln2(t) as for the case we discussed in the course and where Tk(t − 1)

denotes the number of times we have chosen arm k in the last t − 1 steps. But unlike the

standard UCB algorithm, for all other steps in this interval we keep the same arm. Why

might we be interested in such an algorithm? One motivation is complexity. Computing

which arm is best takes some effort. In this way we only have to compute the best arm a

logarithmic (in the time horizon) number of times.

Recall that in the analysis of the original algorithm the key to the analysis was to find a

good upper bound on Tk(n) for k > 1, assuming that arm 1 is the optimum arm. In turn,

we upper bounded the probability that we choose arm k at a particular point in time t by

the probability that arm 1 had an empirical mean at least an ε below its true mean µ1 and

that the empirical mean of arm k was above µ1 − ε. In formulae we had

Tk(n) =
n∑
t=1

1{At=k} ≤
n∑
t=1

1
{µ̂1(t−1)+

√
2 ln f(t)
T1(t−1)

≤µ1−ε}
+

n∑
t=1

1
{µ̂k(t−1)+

√
2 ln f(t)
Tk(t−1)

≥µ1−ε ∧ At=k}
(3)

Let us proceed in the same fashion. Let n = K + 2L − 1. In words, we are at the end of the

L-th interval, where L ∈ N.

(i) [5pts] What is the expression equivalent to (3) for our case?

(ii) [5pts] Look at the first of the two terms on the right of (3) in your equivalent expression.

Derive a suitable upper bound for this first term. If you do not have time for the whole

derivation just write down the first few steps. These are the most crucial ones.
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