
Homework 7: Solutions
Quantum Information Processing

Exercise 1 Bennett 1992 Protocol for quantum key distribution

1) When di = ei, Bob measures the qubit in the same basis as the preparation basis used by
Alice. In other words if ei = di = 0 the transmitted qubit state is |0⟩ and the measurement
is in the Z-basis then this yields a measurement result |0⟩ with probability 1. A similar
argument holds if ei = di = 1 and the transmitted qubit is H |0⟩ and the measurement
is in the X-basis which yields a measurement result H|0⟩ with probability 1. Thus when
di = ei we certainly have yi = 0. So

P (yi = 0|ei = di) = 1, P (yi = 1|ei = di) = 0.

When di ̸= ei then, for example ei = 1 and di = 0, the transmitted state is |ψ⟩ = H |0⟩ but
the measurement is done in the Z-basis which results in |0⟩ or |1⟩ with equal probability
because | ⟨0|ψ⟩ |2 = | ⟨1|ψ⟩ |2 = (1/

√
2)2 = 1/2. So

P (yi = 0|ei ̸= di) =
1

2
, P (yi = 1|ei ̸= di) =

1

2
.

2) We observe from the above analysis that yi = 1 only when di ̸= ei. Indeed if yi = 1 then
Alice and Bob know that ei = 1− di for sure, i.e.

P (ei = 1− di|yi = 1) = 1.

This can be proved more formally from Bayes’ rule:

P (ei = 1− di|yi = 1) =
P (yi = 1|ei = 1− di)P (ei = 1− di)

P (yi = 1)
=

1
2
× 1

2
1
4

= 1

where for the denominator we used

P (yi = 1) = P (yi = 1|ei = di)P (ei = di) + P (yi = 1|ei ̸= di)P (ei ̸= di)

= 0× 1

2
+

1

2
× 1

2
=

1

4
.

Here we have assumed that P (ei ̸= di) = P (ei = di) =
1
2
.

3) The secret key is then generated as follows: Alice and Bob reveal the yi’s and keep the
ei = 1− di such that yi = 1 as their secret bits. The other ei and di are discarded. The
length of the resulting secret key is around N ×P (yi = 1) = N/4, a quarter of the length
of the main sequence.
We observe a few differences with respect to BB84. First the common secret bits are here
constituted from a subset of the encoding and decoding bits. Second the length of the
secret key is halved with respect to BB84. However the main advantage of BB92 over
BB84 is that in BB92 we manipulate only two non-orthogonal states instead of four in
BB84.
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4) Alice and Bob can do a security check by exchanging a small fraction ϵN/4, 0 < ϵ≪ 1of
the secure bits via public channel. If the test is successful they keep the rest of the common
substring secure: thus they have succeeded in generating a common secure string. If there
is no attack from Eve’s side and the transmission channel is perfect, then as we explained
we have ei = 1− di whenever yi = 1. The test should check that

P (ei = 1− di|yi = 1) = 1.

In practice Alice and Bob check that

#(i such that ei = 1− di given that yi = 1) = ϵN/4

which means that the empirical probability is one.

Exercise 2 Copying or unitary attack from Eve in BB84

1) Given Alice sent |0⟩+|1⟩√
2

, by linearity, the state of the two photons in the lab of Eve just
after she made the copying operation is

|Ψ⟩ = UZ

(
|0⟩+ |1⟩√

2
⊗ |b⟩

)
= UZ

|0⟩ ⊗ |b⟩√
2

+ UZ
|1⟩ ⊗ |b⟩√

2

=
|0⟩ ⊗ |0⟩√

2
+

|1⟩ ⊗ |1⟩√
2

=
|00⟩+ |11⟩√

2
.

2) In Bob’s lab the outcome is |0⟩±|1⟩√
2

with probabilities p± = ⟨Ψ|Π± |Ψ⟩, where |Ψ⟩ is given
in Solution 3.1.
Following the hint, we have

Π± = (|0⟩ ⟨0|+ |1⟩ ⟨1|)⊗
(
|0⟩ ± |1⟩√

2

)(
⟨0| ± ⟨1|√

2

)
= (|0⟩ ⟨0|+ |1⟩ ⟨1|)⊗

(
|0⟩ ⟨0| ± |0⟩ ⟨1| ± |1⟩ ⟨0|+ |1⟩ ⟨1|

2

)
=

1

2

(
|00⟩ ⟨00| ± |00⟩ ⟨01| ± |01⟩ ⟨00|+ |01⟩ ⟨01|

+ |10⟩ ⟨10| ± |10⟩ ⟨11| ± |11⟩ ⟨10|+ |11⟩ ⟨11|
)
.

The rest of the calculation is

Π± |Ψ⟩ = 1

2
√
2
(|00⟩ ± |01⟩ ± |10⟩+ |11⟩) ,

p± = ⟨Ψ|Π± |Ψ⟩ = 1√
2
· 1

2
√
2
(⟨00|+ ⟨11|) (|00⟩ ± |01⟩ ± |10⟩+ |11⟩)

=
1

4
(⟨00|00⟩+ ⟨11|11⟩)

=
1

2
.
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Exercise 3 Quantum bank note

1) The bank finds the sequence q1, . . . , qN from S. The sequence q1, . . . , qN indicates the
preparation basis of the true quantum bits |ϕ1⟩ , . . . , |ϕN⟩. This allows the bank to mea-
sure the quantum bits using the preparation basis (so the measurement basis is Z if
pi = 0 and X if qi = 1). If the bank note is authentic, each measurement on |ϕi⟩ does
not destroy the quantum bit and the measurement certainly gives an output state |ϕi⟩. If
the bank note is counterfeited, then the measurement does not guarantee to always give
the output state |ϕi⟩.

2) Suppose the counterfeited bank note contains quantum bits in state |ϕ′
1⟩ ⊗ · · · ⊗ |ϕ′

N⟩.
The bank detects a problem if for some i the measurement on |ϕ′

i⟩ does not give the state
|ϕi⟩. Thus the probability that the bank detects a problem is

P (detect a problem) = 1− P (not detect a problem)

= 1−
N∏
i=1

P (meas. on |ϕ′
i⟩ gives |ϕi⟩)

We expand P (meas. on |ϕ′
i⟩ gives |ϕi⟩) into

P (meas. on |ϕ′
i⟩ gives |ϕi⟩

∣∣ |ϕ′
i⟩ = |ϕi⟩) · P (|ϕ′

i⟩ = |ϕi⟩)
+ P (meas. on |ϕ′

i⟩ gives |ϕi⟩
∣∣ |ϕ′

i⟩ ̸= |ϕi⟩) · P (|ϕ′
i⟩ ̸= |ϕi⟩)

= 1 · (1− P (|ϕ′
i⟩ ̸= |ϕi⟩)) +

1

2
· P (|ϕ′

i⟩ ̸= |ϕi⟩)

where P (meas. on |ϕ′
i⟩ gives |ϕi⟩

∣∣ |ϕ′
i⟩ ̸= |ϕi⟩) = 1/2 can be checked explicitly for the

two possible cases: |ϕ′
i⟩ = |0⟩ and |ϕi⟩ = |0⟩+|1⟩√

2
, or |ϕ′

i⟩ =
|0⟩+|1⟩√

2
and |ϕi⟩ = |0⟩.

The event |ϕ′
i⟩ ̸= |ϕi⟩ happens in either of the following cases:

• The true quantum bit |ϕi⟩ is |0⟩; the counterfeiter measures it withX basis; and upon
the measurement the counterfeiter observes |0⟩+|1⟩√

2
. This happens with probability

1
2
× 1

2
× 1

2
= 1

8
.

• The true quantum bit |ϕi⟩ is |0⟩+|1⟩√
2

; the counterfeiter measures it with Z basis; and
upon the measurement the counterfeiter observes |0⟩. This happens with probability
1
2
× 1

2
× 1

2
= 1

8
.

We conclude that

P (|ϕ′
i⟩ ̸= |ϕi⟩) =

1

8
+

1

8
=

1

4
,

P (meas. on |ϕ′
i⟩ gives |ϕi⟩) = 1 ·

(
1− 1

4

)
+

1

2
· 1
4
=

7

8
,

P (detect a problem) = 1−
(
7

8

)N

.
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