
The Transport Layer
Lecture 6:

Katerina Argyraki, EPFL

Computer Networks

Outline (from last lecture)

• Interaction with application layer
• UDP
• TCP

• Reliable data delivery
• Imaginary protocol
• UDP & TCP at the next lecture

!2

Computer Networks

Outline (from last lecture)

• Interaction with application layer
• UDP
• TCP

• Reliable data delivery
• Imaginary protocol
• UDP & TCP at the next lecture

!3

Computer Networks

UDP: reliability elements

• UDP does not really offer  
reliable data delivery

• Checksums to detect corruption

!4

Computer Networks

TCP: reliability elements
• Checksums to detect corruption

• ACKs to signal successful reception

• SEQs to disambiguate segments

• Timeouts to detect loss

• Retransmissions to recover  
from corruption+loss

!5

Computer Networks

TCP: reliability elements
• Checksums to detect corruption

• ACKs to signal successful reception

• SEQs to disambiguate segments

• Timeouts to detect loss

• Retransmissions to recover  
from corruption+loss

!6

Computer Networks

Alice’s computer Bob’s computer

!7

rdt_send([A])

udt_send(…)

deliver_data([A])

udt_send(…)

rdt_rcv(…)

rdt_rcv(…)
ACK 1|

SEQ 0| [A]

[B]

rdt_send([B])

SEQ 10|

ACK 10|

deliver_data([B])

Computer Networks

SEQs & ACKs
• Data bytes are implicitly numbered

• SEQ: # of the first data byte

• ACK: # of the next data byte that  
is expected (cumulative)

• Both always present,  
even if it appears unnecessary

!8

Computer Networks

Alice’s computer Bob’s computer

!9

ACK 5|

SEQ 0| [hello]

[hey!]

SEQ 10|

ACK 10|

SEQ 5| [all ok]
ACK 14|

ACK 11|
[bye]

SEQ 14|

Computer Networks !10

ACK 200

SEQ 0
[GET request]

[file, pa
rt 1]SEQ 10

ACK 10

ACK 200
[file, pa

rt 2]SEQ 1510

ACK 200
[file, pa

rt 3]
SEQ 3010

SEQ 200
ACK 1510

SEQ 200
ACK 3010

SEQ 200
ACK 3110

200 bytes

1500 bytes

1500 bytes

100 bytes

Alice’s computer Bob’s computer

Computer Networks

Simple things to remember
• A TCP connection may carry  

bidirectional communication

• A segment may or may not carry data  
(but it always carries a SEQ)

• There exists a maximum segment size
(MSS), dictated by network properties

!11

Computer Networks

TCP: reliability elements
• Checksums to detect corruption

• ACKs to signal successful reception

• SEQs to disambiguate segments

• Timeouts to detect loss

• Retransmissions to recover  
from corruption+loss

!12

Computer Networks !13

SEQ 0
X

timeout SEQ 0

Alice’s computer Bob’s computer

Computer Networks !14

How long should the timeout be?

Computer Networks

Timeout calculation

• EstimatedRTT =
0.875 EstimatedRTT + 0.125 SampleRTT

• DevRTT = function(RTT variance)

• Timeout = EstimatedRTT + 4 DevRTT

!15

Empirical, conservative prediction of RTT

Computer Networks !16

AC
K
1

SEQ 0
SEQ 1
SEQ 2
SEQ 3

X

fast
retransmit SEQ 1

SEQ 4

AC
K
1

AC
K
1

AC
K
1

Alice’s computer Bob’s computer

Computer Networks

Two retransmission triggers
• Timeout => retransmission of oldest

unacknowledged segment

• 3 duplicate ACKs => fast retransmit of
oldest unacknowledged segment
• avoid unnecessary wait for timeout
• 1 duplicate ACK not enough <= network may have

reordered a data segment or duplicated an ACK

!17

Computer Networks

TCP: reliability elements
• Checksums to detect corruption

• ACKs to signal successful reception

• SEQs to disambiguate segments

• Timeouts to detect loss

• Retransmissions to recover  
from corruption+loss

!18

Computer Networks

Is TCP Go-back-N or SR?
• Go-back-N: cumulative ACKs,  

retransmits multiple segments

• SR: selective ACKs,  
retransmits 1 segment on timeout

• TCP: cumulative ACKs,  
retransmits 1 segment => Go-back-N/SR mix

!19

Computer Networks

TCP elements

• Connection setup and teardown

• Connection hijacking

• Connection setup (SYN) flooding

• Flow control

• Congestion control

!20

Computer Networks

TCP elements

• Connection setup and teardown

• Connection hijacking

• Connection setup (SYN) flooding

• Flow control

• Congestion control

!21

Computer Networks

send
buffer

!22

SYN|SEQ x|ACK -

SEQ x+1|ACK y+1|[data]

Alice’s computer Bob’s computer

SYN|S
EQ y|

ACK x
+1

receive
buffer

send
buffer

receive
buffer

connection
socket

listening
socket

connection
socket

connection
established

Computer Networks !23

Alice’s computer Bob’s computer

FIN

ACK

FIN

ACK

send
buffer

receive
buffer

send
buffer

receive
buffer

connection
socket

listening
socket

connection
socket

connection
closed

Computer Networks

Connection setup
• 3-way handshake

• “TCP client”: end-system initiating the handshake
• “TCP server”: the other end-system

• First 2 segments carry a SYN flag
• 1-bit field in the TCP header

• “TCP connection” = resources (sockets,
buffers…) allocated for communication

!24

Computer Networks

TCP elements

• Connection setup and teardown

• Connection hijacking

• Connection setup (SYN) flooding

• Flow control

• Congestion control

!25

Computer Networks !26

SYN|SEQ 0|ACK -

SEQ 1|ACK 1|[GET …]

Alice’s computer Bob’s computer

SYN|S
EQ 0|

ACK 1

Jack’s computer

SEQ 1
|ACK

201|
[file

]

SEQ 1
|ACK

201|
[file

]

X
connection
hijacked

Computer Networks !27

How to prevent connection hijacking?

Computer Networks !28

SYN|SEQ 5672|ACK -

SEQ 5673|ACK 299|[GET …]

Alice’s computer Bob’s computer

SYN|S
EQ 29

8|ACK
 5673

Jack’s computer

SEQ 1
|ACK

1| [f
ile]

SEQ 2
99|AC

K 587
3| [f

ile]

X

Computer Networks

Connection hijacking
• Attacker impersonates TCP server (or client)

• sends segment that appears to be coming from
the impersonated end-system

• Approach: fake valid segment
• if the TCP header predictable

• Solution: make TCP header (SEQs)
unpredictable

!29

Computer Networks

TCP elements

• Connection setup and teardown

• Connection hijacking

• Connection setup (SYN) flooding

• Flow control

• Congestion control

!30

Computer Networks !31

SYN|SEQ x|ACK -

SEQ x+1|ACK y+1|[data]

Alice’s computer Bob’s computer

SYN|S
EQ y|

ACK x
+1

incomplete
connections

connection
established

Computer Networks !32

SYN

Denis’s computer Bob’s computer

incomplete
connections

SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN

Computer Networks !33

SYN|SEQ x|ACK -

SEQ x+1|ACK y+1|[data]

Alice’s computer Bob’s computer

SYN|A
CK x+

1

incomplete
connections

SEQ y
=hash

(secr
et, A

 IP)

connection
established

Computer Networks !34

SYN

Denis’s computer Bob’s computer

SYN
SYN
SYN
SYN
SYN
SYN
SYN
SYN

Computer Networks

SYN flooding
• Attacker exhausts buffer for  

incomplete connections
• sends lots of connection setup requests

• Problem: one small resource affects  
all TCP communication

• Solution: remove the resource
• pass the state to the TCP client

!35

Computer Networks

TCP elements

• Connection setup and teardown

• Connection hijacking

• Connection setup (SYN) flooding

• Flow control

• Congestion control

!36

Computer Networks

Alice’s computer Bob’s computer

!37

rx-win 1
00

[100 bytes]

rx-win 0

rx-win 0

rx-win 5
0

receive
buffer

Computer Networks

Flow control

• Goal: not overwhelm the receiver
• not send at a rate that the  

receiver cannot handle

• How: “receiver window”
• spare room in receiver’s rx buffer
• receiver communicates it to sender  

as TCP header field

!38

Computer Networks

TCP elements

• Connection setup and teardown

• Connection hijacking

• Connection setup (SYN) flooding

• Flow control

• Congestion control

!39

Computer Networks

Congestion control

• Goal: not overwhelm the network
• not send at a rate that the  

would create network congestion

• How: “congestion window”
• number of unacknowledged bytes that the

sender can transmit without creating congestion
• sender estimates it on its own

!40

Computer Networks !41

Alice’s computer Bob’s computer

ACK

[data]
[data]
[data]
[data]
[data]
[data]
[data]
[data]

ACK

ACK

ACK

ACK

ACK

ACK

ACK

R bps x RTT sec
bandwidth delay product

Computer Networks

Bandwidth-delay product

• Max amount of traffic that the sender
can transmit until it gets the first ACK

• = the maximum congestion window size
that makes sense

!42

Computer Networks !43

Alice’s computer Bob’s computer

ACK

[data]

[data]
[data] XX

[data]timeout

Computer Networks

Self-clocking

• Sender guesses the “right” congestion
window based on the ACKs

• ACK = no congestion, increase window

• No ACK = congestion, decrease window

!44

Computer Networks !45

Alice’s computer Bob’s computer

ACK 100

SEQ 0

SEQ 100
SEQ 200

ACK 2
00

ACK
 30

0

SEQ 300SEQ 400

SEQ 500SEQ 600

N=100 bytes

N=200 bytes

N=300 bytes

N=400 bytes

0 - 99

100 - 199
200 - 299

300 - 399
400 - 499

500 - 599
600 - 699

Computer Networks !46

Alice’s computer Bob’s computer

SEQ 0

SEQ 100
SEQ 200

SEQ 300SEQ 400
SEQ 500SEQ 600

N=100 bytes

N=200 bytes

N=300 bytes
N=400 bytes

Computer Networks

Increase window size
• Exponentially

• by 1 MSS for every ACKed segment
• = window doubles every RTT
• when we do not expect congestion

!47

Computer Networks !48

Alice’s computer Bob’s computer

SEQ 0

SEQ 100SEQ 200

SEQ 300SEQ 400
SEQ 500
SEQ 600

N=100 bytes

N=200 bytes

N=300 bytes
N=400 bytes XX

XX

timeout

ACK 100

ACK 200

ACK 300

ssthresh=  
200 bytes

Computer Networks !49

Alice’s computer Bob’s computer

ACK 400

SEQ 300

SEQ 400
SEQ 500

ACK 5
00

ACK
600

SEQ 600SEQ 700 (50 bytes)SEQ 750

N=100 bytes

N=200 bytes

N=250 bytes

ACK
700

N=324 bytes

N=290 bytes
SEQ 850 (40 bytes)

ssthresh=  
200 bytes

Computer Networks

Increase window size
• Exponentially

• by 1 MSS for every ACKed segment
• = window doubles every RTT
• when we do not expect congestion

• Linearly
• by MSS*MSS/N for every ACKed segment
• = by 1 MSS every RTT
• when we expect congestion

!50

Computer Networks !51

Goal: increase N by MSS bytes per RTT

She expects ACKs per RTT

bytes

Alice sends N unack-ed bytes per RTT

= MSS bytes

MSS
N

N
MSS*MSS

MSS
N

*

= data segments per RTT
MSS
N

Computer Networks

Basic algorithm (Tahoe)
• Set window to 1 MSS,  

increase exponentially

• On timeout, reset window to 1 MSS,  
set ssthresh to last window/2

• On reaching ssthresh,  
transition to linear increase

!52

Computer Networks !53

Alice’s computer Bob’s computer

SEQ 300
N=400 bytes

N=500 bytes

ssthresh=  
200 bytes

300 - 399
400 - 499
500 - 599
600 - 699

SEQ 400
SEQ 500
SEQ 600

X

ACK
300

ACK
300

ACK
300

fast  
retransmit

SEQ 300
SEQ 700

700 - 799

ACK
700

N=200 bytes SEQ 800

Computer Networks !54

Alice’s computer Bob’s computer

SEQ 300
N=500 bytes

N=500 bytes

ssthresh=  
200 bytes

300 - 399
400 - 499
500 - 599
600 - 699

SEQ 400
SEQ 500
SEQ 600

X

ACK
300

ACK
300

ACK
300

fast  
retransmit

SEQ 300

ACK
800

N=200 bytes

SEQ 800

700 - 799

SEQ 700

AC
K
30
0

N=600 bytes

SEQ 900

Computer Networks

Basic algorithm (Reno)
• Set window to 1 MSS, increase exponentially

• On timeout, reset window to 1 MSS,  
set ssthresh to last window/2, retransmit

• On receiving 3 duplicate ACKs,  
set window to ssthresh (+inflation), retransmit

• On reaching ssthresh transition  
to linear increase

!55

Computer Networks

ssthresh = window/2

new ACK

window = window + MSS

exponential
increase

linear
increase

timeout

window = MSS

window >= ssthresh

new ACK

window = window + MSS*MSS/window

retransmit

timeout

ssthresh = window/2
window = MSS
retransmit

!56

Computer Networks

ssthresh = window/2

ssthresh = window/2

new ACK
window = window + MSS

exponential
increase

linear
increase

timeout

window = MSS

window >= ssthresh

new ACK
window = window + MSS * [factor<1]

timeout

ssthresh = window/2
window = MSS

fast
recovery

3 duplicate ACKs

window = ssthresh + 3 MSS window = window + MSS
duplicate ACK

new ACK

timeout

fast retransmit

ssthresh = window/2
3 duplicate ACKs

window = ssthresh + 3 MSS
fast retransmit

retransmit

retransmit

!57

window = ssthresh

Computer Networks

TCP terminology

• Exponential increase = slow start
• it’s called slow, because it starts from a

small window; but it’s not really slow,  
the window increases exponentially

• Linear increase = congestion avoidance
• this term does make sense; it means that

TCP expects congestion, so it increases the
window more cautiously

!58

Computer Networks

Flow + congestion control

• Goal: not overwhelm receiver or network

• How: sender window
• sender learns receiver window from receiver
• sender computes congestion window on its own
• Sender window = min{ receiver w, congestion w }

!59

