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1 Fluid description of plasmas

Memento: plasma self-consistency

Figure 1: Illustration of plasma self-consistency.

Models for plasmas:

1. single-particle

2. kinetic (Boltzmann equation)

3. multi-fluid

4. single fluid

Formally one could start from 1., then introduce the concept of distribution function and
get to 2., then average over the distribution (different “moments”) to get to 3., and then
“average” over different species to get to 4.

• We have seen particle orbits in 1., and identified guiding center drifts,
• We have calculated exchanges of energy and momentum via collisions to “obtain”

equilibrium distributions.
• Now we take a macroscopic approach and describe the plasma as a fluid.

A charged fluid is described by:

- Particle number density: ne,i = ne,i(x, t)

- Charge density: ρ(x, t) =
∑
j njqj = e(Zini − ne) (j indicates the different species).

- Current density: J(x, t) =
∑
j njqjvj = e(Zinivi − neve) ∼= ene(vi − ve). [Zi = 1]

- Velocity field: vj = vj(x, t), flux Γj = njvj .

These quantities must be considered as averages of all the individual particles that form the
fluid element at x. E.g.

v =
∑

particles in ∆V

ui
∆V n

=
∑

particles in ∆V

ui
∆N
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where ∆N = ∆V n is the number of particles inside ∆V . The differential fluid element dx
should be considered as ‘microscopically big”: i.e., the result of an average of many particles,
and “macroscopically small” i.e., for which can apply differential calculus.

All the quantities involved in the fluid description should be considered as the result of an
average also over velocity space.

1.1 Two ways of describing fluid dynamics: Lagrangian and Eulerian

1. Lagrangian: we follow a fluid element in its evolution (“we sit on top of it”), i.e., the
exact number of particles that form the initial element of volume ∆V .

Figure 2: Lagrangian approach in fluid dynamics.

Variations are seen because we move within the fluid and because each point varies in time.
The so-called Lagrangian or total or convective derivative is:

d
dt
=
∂

∂t
+ v · ∇

Example:
G = G(x, t):

d
dt
G(x, t) =

∂G

∂t
+
∂G

∂x

∂x

∂t
=
∂G

∂t
+ vx

∂G

∂x
.

2. Eulerian: the observer stays at a fixed point in space. The fluid goes through the observed
volume element.

Figure 3: Eulerian approach in fluid dynamics.

In the Eulerian view, the only possibility to have time variations is to have an explicit time
dependence ∂

∂t .

*See exercise series for more details
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2 Two fluid model

2.1 Continuity equation

We have the first equation from the conservation of mass,

∂ne,i
∂t
+∇ · (ne,i ve,i) = 0,

which is valid for each species. To make the notation less heavy, we will drop the subscripts
e, i from here onwards, where this does not create any confusion.
See the exercise series for a derivation of the continuity equation in both the Lagrangian and
the Eulerian approaches.

2.2 Equation of motion

The second equation is for conservation of momentum (equation of motion). We use the
Lagrangian view for the differential volume element of fluid.

This description assumes the presence of three forces: the Lorentz force due to electro-
magnetic fields, a force resulting from pressure gradients, and a force due to collisional
drag.

Lorentz force

First, let’s consider Lorentz force on volume ∆V (for one species)

Ftot =
∑

j (particles)

qj (E+ uj × B) = ∆N q (E+ v × B) as v =

∑
j uj

∆N
and q =

∑
j qj

∆N

Thus, the force per unit volume is:

Ftot
∆V

=
∆N

∆V
q (E+ v × B) = n q (E+ v × B).

Pressure

Let’s evaluate the pressure force. For this, we consider that particles move in and out of the
volume element due to their random motion. Note that on average the number of particles
in the fluid element does not vary (remember: we are considering the Lagrangian view).

p is the force per unit area due to thermal motion (p = nT ), felt by the fluid element.

Example: Isotropic pressure
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Figure 4: Isotropic pressure on a fluid element.

Net force (for example) in x-direction:

Fx =
(
p(0)− p(∆x)

)
∆y∆z ∼= −

∂p

∂x
∆x∆y∆z.

So,

Fx = −
∂p

∂x
∆V , and analogously Fy = −

∂p

∂y
∆V Fz = −

∂p

∂z
∆V

We obtain:
F

∆V
= −∇p.

Note 5.2.1: In the Lagrangian view there is no net change in the number of particles in the
volume element. However, particles crossing the boundary in and out can indeed exchange
momentum.

In general, the pressure could be anisotropic

p =

 pxx pxy pxzpyx pyy pyz
pzx pzy pzz

 ; in this case,
F

∆V
= −∇ · p

Collisional drag

The exchange of momentum between the different species (electron/ions) is given by:{
−mene ν̄e/ip (ve − vi) Electrons
−mini ν̄ i/ep (vi − ve) Ions

Equation of conservation of momentum

Momentum per unit volume:∑
j mjuj

∆V
= m
∆N

∆V
v = mn v. For one species
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“Force/volume” = n q (E+ v × B) + “pressure force” + “collisional drag”

In our Lagrangian picture (in which we maintain the same number of particles):

d
dt

(momentum in ∆V ) = ∆V ne,iqe,i(E+ve,i ×B)−∆V∇pe,i −∆V me,ine,i ν̄e/i,i/ep (ve,i −vi ,e)

Momentum in ∆V is given by me,i ne,i ∆V ve,i . As ne,i∆V = ∆N,

d
dt
(me,i ne,i ∆V ve,i) = me,i

d
dt
(∆N vei ) = ∆Nmei

dvei
dt
= ne,i∆V mei

dvei
dt

where we have used the fact that the number of particles in fluid volume is constant by the
definition of the Lagrangian view.

We can divide the whole equation by ∆V and obtain the equation of conservation of mo-
mentum,

me,ine,i
dve,i
dt
= qe,ine,i(E+ vei × B)−∇pe,i −me,ine,i ν̄

e/i,i/e
p (ve,i − vi ,e).

2.3 Equation of state

How to treat the pressure p? We already assumed a scalar p. To fully describe the pressure,
we would need to consider the equation of conservation of energy, but this will include the
heat flux. In general, the equation for the nth order moment contains the (n+1)th moment
of the distribution.

Example:

Continuity (0th order) contains v (1st order), determined by:
Momentum (1st order) contains p (2nd order), determined by:
Energy (2nd order) contains Q (3rd order), determined by:
. . . . . . . . .

Similarly, higher-order moments of the distribution function will involve even higher-order
terms.

For example, the heat flux Q is given by:

Q = mn

∫
du u f (u) |u− u0|2

To truncate the “hierarchy”, we can consider a thermodynamic equation of state for the
plasma.

pV γ = constant ,

where γ is related to the assumption on the property of the heat flux:
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1. Isothermal compression: p increases only because density increases: γ = 1. Isother-
mal transformations are possible in a real plasma, for example, along B: fast particle
streaming along B can maintain a constant temperature (ex. plasma wave along B).

2. Adiabatic process: compression must be faster than heat exchange. Possible across B,

γ =
cp
cV
=
Ndof + 2

Ndof

Where Ndof is the number of degrees of freedom. Note that γ is often referred to as
“adiabatic exponent” in both cases.

2.4 Summary of “fluid” equations for a two-species plasma

Continuity equation for both electrons (e) and ions (i):

∂ne,i
∂t
+∇ · (ne,ive,i) = 0 (2.1)

Moment equation for both electrons (e) and ions (i):

me,ine,i
dve,i
dt
= qe,ine,i(E+ ve,i × B)−∇pe,i −me,ine,i ν̄e/ip (ve,i − vi ,e)︸ ︷︷ ︸

Re,i

(2.2)

Equation of State:

pe,in
−γ
e,i = constant (2.3)

Gauss’s Law for Electric Field:

∇ · E =
ρ

ε0
ρ =

∑
e,i

qe,ine,i = Zeni − ene (2.4)

Gauss’s Law for Magnetic Field:

∇ · B = 0 (2.5)

Faraday’s Law:

∇× E = −
∂B

∂t
(2.6)

Ampère’s Law (with Maxwell’s correction):

∇× B = µ0J+
1

c2
∂E

∂t
J =

∑
e,i

ne,iqe,ive,i (2.7)

We have 18 equations, but two of Maxwell’s equations are redundant. Indeed:
∇ · B = 0 ⇐⇒ ∇ · (∇× E) = 0 = −

∂

∂t
(∇ · B)

∇ · E =
ρ

ε0
⇐⇒ ∇ · (∇× B) = 0 = µ0∇ · J+

1

c2
∂

∂t
(∇ · E)

(2.8)
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But,

µ0∇ · J = µ0∇ · (
∑
e,i

qe,ine,ive,i) = µ0
∑
e,i

qe,i∇ · (ne,ive,i)

(continuity) = −µ0
∑
e,i

qe,i
∂ne,i
∂t
= −

∂

∂t

∑
e,i

ne,iqei
ε0c2

= −
1

c2
∂

∂t

ρ

ε0

So,

0 = µ0∇ · J+
1

c2
∂

∂t
(∇ · E) = −

1

c2
∂

∂t

(
ρ

ε0
−∇ · E

)

Thus, we have 16 independent equations. How many variables?

ne,i → 2, ve,i → 6, pe,i → 2,E→ 3,B→ 3.

We have 16 variables! This system of equations is complete, but very complex (e.g. it is
nonlinear) and difficult to treat in actual geometry.

To be able to deal with actual plasma configurations (for ex. to find equilibrium states and
evaluate their stability) we should simplify the description and, by combining the two-fluid
variables and equations, construct a single fluid model.

3 Single fluid model

Let us start by defining the variables that describe a single fluid:

1. Mass density: ρm = mini +mene ∼= n(mi +me) ∼= nmi . For simplicity, we work with
Z = 1. Due to quasi-neutrality, ne ∼= ni .

2. Charge density: ρq = (ni − ne)e (small but not necessarily zero)

3. Center of mass velocity:

u =
minivi +meneve
mini +mene

∼= vi +
me
mi
ve ∼= vi

4. Current density: J = ne(vi − ve)

5. Total pressure: p = pe + pi , as u ∼ vi and vth,e ≫ u, vi , ve .

The idea is to obtain single-fluid equations from linear combinations of two-fluid equations.
Specifically, we will exploit the continuity and momentum equations for electrons and ions.

a) Continuity equations:
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meCe +miCi ⇒
∂ρm
∂t
+∇ · (ρmu) = 0 mass continuity (3.1)

qeCe + qiCi ⇒
∂ρq
∂t
+∇ · J = 0 charge continuity (3.2)

b) Momentum equations:

To derive the momentum equation for a single fluid, we start by combining the momentum
equations for electrons (Me) and ions (Mi).

Me +Mi ⇒ ρm
du
dt
= ρqE+ J× B−∇p (3.3)

Here, ρm is the mass density, u is the center of mass velocity, ρq is the charge density, J is
the current density, E is the electric field, B is the magnetic field, and p is the pressure. The
term ρqE+ J×B−∇p represents the forces acting on the fluid, including the electric force,
the Lorentz force, and the pressure gradient force.

Since Re,i + Ri ,e = 0, the collisional effects between electrons and ions cancel out in the
combined momentum equation. However, we still need a second equation to fully describe
the momentum.

We consider the momentum equation for electrons alone:

Me ⇒ mene
dve
dt
= −ene(E+ ve × B)−∇pe − Re,i (3.4)

In this equation, me is the mass of an electron, ne is the electron density, ve is the electron
velocity, pe is the electron pressure, and Re,i is the frictional force between electrons and
ions.

Next, we need to express Re,i in terms of known quantities:

Re,i = mene ν̄
e/i
p (ve − vi) = e2n2eη(ve − vi) = −eneηJ (3.5)

Here, ν̄e/ip is the average collision frequency between electrons and ions, and η is the resistivity
given by:

η =
me ν̄

e/i
p

e2ne
(3.6)

In this expression, η represents the resistivity of the plasma, which is a measure of how
the collisions between particles impede the current. The term Re,i describes the frictional
force between electrons and ions, and by substituting this back into the electron momentum
equation, we can understand the effects of collisions on electron motion.
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Approximation: Neglect electron inertia: me → 0. This means we describe slow phenomena
compared to the electron response time.

0 ∼= −ene(E+ ve × B)−∇pe + eneηJ ⇒ E+ ve × B = ηJ−
1

ene
∇pe .

But ve can be expressed in terms of J: J = ene(vi − ve), ve = vi − J
ene
∼= u− J

ene
.

Thus, we obtain:

E+

(
u−

J

ene

)
× B = ηJ−

1

ene
∇pe

or

E+ u× B = ηJ+
J× B−∇pe
ene

. (3.7)

The system obtained so far is:

∂ρm
∂t +∇ · (ρmu) = 0,

∂ρq
∂t +∇ · J = 0 “Continuity” (of mass and charge)

ρm
d
dtu = ρqE+ J× B−∇p “Force equation”

E+ u× B = ηJ+ 1
ene
(J× B−∇pe) “Ohm’s law”

d
dt (pρ

−γ
m ) = 0 “State equation”

+ Maxwell’s equations

(3.8)

We would like to simplify the system even further. What can we do? We can consider:

• quasi neutrality, ρq → 0
• slow phenomena, ∂∂t → 0
• large scale phenomena, ρL ≪ L (L is the plasma scale length)

Approximation:

• Quasi neutrality: ρq ∼ 0 except in Poisson’s equation to determine E. This assump-
tion, often referred to as “the plasma approximation”, simplifies the Maxwell equations
by eliminating the charge density term outside of contexts where electric fields are
directly calculated.

• Slow phenomena: 1
c2
∂E
∂t → 0, leading to ∇ × B ∼= µ0J. This approximation is

valid when electromagnetic phenomena evolve much slower than the speed of light,
effectively simplifying Ampère’s law by neglecting the displacement current.

• Large scale phenomena: Relative to the Larmor radius, this leads to neglecting
1
e ne
(J × B) and ∇pe

e ne
in Ohm’s law. This assumption is crucial for considering dy-

namics on scales much larger than the microscopic interactions, simplifying the force
terms in the generalized Ohm’s law.
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Proof: we will express the gradient in terms of order of magnitude of characteristic lengths.∣∣∣∇penee ∣∣∣
|u× B|

pe=Tene∼
Te=const

Te∇ne
eneuB

|∇ne |∼ neL∼
Tene
LeneuB

Ωc,i=
eB
mi
=

Te
LumiΩc,i

Te∼Ti∼
Ti
mi

1

LuΩc,i
,

where L is the scale length. As v2th,i =
Ti
mi

, we obtain:

v2th,i
LuΩc,i

=
vth,i
Ωc,i

vthi
uL

ρL,i=
vthi
Ωc,i
=

ρL,i
L

vthi
u
≪ 1,

as u ≳ vth,i , and, more importantly, ρL,i ≪ L.

For the 1
ene
(J×B) term one can argue that, because of the equation of motion, considered

for ρq → 0, and for slow phenomena ( ddt → 0), it is of the same order as the pressure term.
So, |J× B| ≈ |∇p| and both can be neglected in Ohm’s law for large-scale phenomena.

3.1 Summary: “MagnetoHydroDynamic” model (MHD)

∂ρm
∂t +∇ · (ρmu) = 0
∇ · J = 0
ρm

d
dtu = J× B−∇p

E+ u× B =

{
ηJ “resistive MHD”

0 “ideal MHD” (for hot plasmas)
d
dt (pρ

−γ
m ) = 0

∇× B = µ0J ∇ · B = 0
∇× E = − ∂∂tB

(3.9)

Note 3.1.1: E+ u×B correspond to the electric field seen by moving charges. We have 16
equations of which two are redundant, thus leaving us with 14 equations and therefore 14
unknowns (ρm, J, p,u,E,B).

This is useful for:

• macroscopic phenomena (ρL ≪ L)
• relatively slow phenomena (τ ≫ Ω−1c,i , me

d
dt → 0,

1
c2
∂E
∂t → 0)

3.2 Consequences of ideal MHD model

Magnetic flux is conserved, we say that the flux is frozen into the plasma. The field lines
and the flux tubes associated with them acquire an important meaning as if they were real
objects. An interesting application of this is the dynamo effect.
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Qualitative discussion of dynamo effect

The freezing of B in plasma is believed to be at the origin of the magnetic field in the universe
and in the (melted) metallic core of planets such as the earth through the “dynamo effect”,
illustrated in figure 5.

The dynamo algorithm starts with first stretching a closed flux rope of cross-section S0 to
twice its length preserving its volume, as in an incompressible flow, see (a) → (b) in figure
5. The rope’s cross-section then decreases by a factor of two (S1 = S0/2), and because of
flux freezing the magnetic field doubles (B1 = 2B0). In the next step, the rope is twisted
into a figure eight, (b) → (c), and then folded, (c) → (d), so that now there are two loops,
whose fields now point in the same direction and together occupy the same volume as the
original flux loop. The flux through this volume has now doubled. The last important step
consists of merging the two loops into one, (d)→ (a), through small diffusive effects. This is
important in order that the new arrangement doesn’t easily undo itself and the whole process
becomes irreversible. The newly merged loops now become topologically the same as the
original single loop, but with the field strength scaled up by a factor of 2.

It is believed that complex fluid motion can lead to effective stretching and folding of flux
tubes, therefore to amplification (or creation from thermal noise) of magnetic fields (“dynamo
effect”).

(a) (b)

(c)(d)

Figure 5: The stretch-twist-fold scheme for fast dynamo effect. Courtesy of A. Brandenburg,
K. Subramanian, Physics Reports 417 (2005) 1–209.

Another aspect of the flux freezing is the question of solar flares, CME, and their “connection”
to our ionosphere and atmosphere. Naturally, field lines and plasma do not stay "frozen"
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together for an infinite time if the resistivity is finite.

In an exercise you will show that magnetic field follows a diffusion equation, with a diffusion
time given by:

τ ∼
µ0L

2

η
, so for η → 0, τ →∞. (3.10)
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